Exemplo n.º 1
0
        /// Override _all_ time, jacobian etc. updating.
        /// In detail, it computes jacobians, violations, etc. and stores
        /// results in inner structures.
        public override void update(double mytime, bool update_assets = true)
        {
            // Inherit time changes of parent class (ChLink), basically doing nothing :)
            base.update(mytime, update_assets);

            // compute jacobians
            ChVector AbsDist = Body1.TransformPointLocalToParent(pos1) - Body2.TransformPointLocalToParent(pos2);

            curr_dist = AbsDist.Length();
            ChVector D2abs  = ChVector.Vnorm(AbsDist);
            ChVector D2relB = Body2.TransformDirectionParentToLocal(D2abs);
            ChVector D2relA = Body1.TransformDirectionParentToLocal(D2abs);

            ChVector CqAx = D2abs;
            ChVector CqBx = -D2abs;

            ChVector CqAr = -ChVector.Vcross(D2relA, pos1);
            ChVector CqBr = ChVector.Vcross(D2relB, pos2);

            Cx.Get_Cq_a().ElementN(0) = CqAx.x;
            Cx.Get_Cq_a().ElementN(1) = CqAx.y;
            Cx.Get_Cq_a().ElementN(2) = CqAx.z;
            Cx.Get_Cq_a().ElementN(3) = CqAr.x;
            Cx.Get_Cq_a().ElementN(4) = CqAr.y;
            Cx.Get_Cq_a().ElementN(5) = CqAr.z;

            Cx.Get_Cq_b().ElementN(0) = CqBx.x;
            Cx.Get_Cq_b().ElementN(1) = CqBx.y;
            Cx.Get_Cq_b().ElementN(2) = CqBx.z;
            Cx.Get_Cq_b().ElementN(3) = CqBr.x;
            Cx.Get_Cq_b().ElementN(4) = CqBr.y;
            Cx.Get_Cq_b().ElementN(5) = CqBr.z;

            //***TO DO***  C_dt? C_dtdt? (may be never used..)
        }
Exemplo n.º 2
0
        /// Get the link coordinate system, expressed relative to Body2 (spherical side).
        /// This represents the 'main' reference of the link: reaction forces
        /// and reaction torques are reported in this coordinate system.
        public override ChCoordsys GetLinkRelativeCoords()
        {
            ChVector            pos1 = Body2.TransformPointParentToLocal(Body1.TransformPointLocalToParent(m_pos1));
            ChMatrix33 <double> A    = new ChMatrix33 <double>(0);

            ChVector u = (m_pos2 - pos1).GetNormalized();
            ChVector w = Body2.TransformDirectionParentToLocal(Body1.TransformDirectionLocalToParent(m_dir1));
            ChVector v = ChVector.Vcross(w, u);

            A.Set_A_axis(u, v, w);

            return(new ChCoordsys(pos1, A.Get_A_quaternion()));
        }
Exemplo n.º 3
0
 /// Transform generic cartesian force into absolute force+torque applied to body COG.
 /// If local=1, force & application point are intended as expressed in local
 /// coordinates, if =0, in absolute.
 public void To_abs_forcetorque(ChVector force,
                                ChVector appl_point,
                                bool local,
                                ref ChVector resultforce,
                                ref ChVector resulttorque)
 {
     if (local)
     {
         // local space
         ChVector mforce_abs = TransformDirectionLocalToParent(force);
         resultforce  = mforce_abs;
         resulttorque = ChVector.Vcross(TransformDirectionLocalToParent(appl_point), mforce_abs);
     }
     else
     {
         // absolute space
         resultforce  = force;
         resulttorque = ChVector.Vcross(ChVector.Vsub(appl_point, coord.pos), force);
     }
 }
Exemplo n.º 4
0
        /// Updates motion laws, marker positions, etc.
        public override void UpdateTime(double mytime)
        {
            // First, inherit to parent class
            base.UpdateTime(mytime);

            ChFrame <double> abs_shaft1 = ChFrame <double> .FNULL; //new ChFrame<double>();
            ChFrame <double> abs_shaft2 = ChFrame <double> .FNULL; //new ChFrame<double>();

            ((ChFrame <double>)Body1).TransformLocalToParent(local_shaft1, abs_shaft1);
            ((ChFrame <double>)Body2).TransformLocalToParent(local_shaft2, abs_shaft2);

            ChVector dcc_w = ChVector.Vsub(Get_shaft_pos2(), Get_shaft_pos1());

            // compute actual rotation of the two wheels (relative to truss).
            ChVector md1 = abs_shaft1.GetA().MatrT_x_Vect(dcc_w);

            md1.z = 0;
            md1   = ChVector.Vnorm(md1);
            ChVector md2 = abs_shaft2.GetA().MatrT_x_Vect(dcc_w);

            md2.z = 0;
            md2   = ChVector.Vnorm(md2);

            double periodic_a1 = ChMaths.ChAtan2(md1.x, md1.y);
            double periodic_a2 = ChMaths.ChAtan2(md2.x, md2.y);
            double old_a1      = a1;
            double old_a2      = a2;
            double turns_a1    = Math.Floor(old_a1 / ChMaths.CH_C_2PI);
            double turns_a2    = Math.Floor(old_a2 / ChMaths.CH_C_2PI);
            double a1U         = turns_a1 * ChMaths.CH_C_2PI + periodic_a1 + ChMaths.CH_C_2PI;
            double a1M         = turns_a1 * ChMaths.CH_C_2PI + periodic_a1;
            double a1L         = turns_a1 * ChMaths.CH_C_2PI + periodic_a1 - ChMaths.CH_C_2PI;

            a1 = a1M;
            if (Math.Abs(a1U - old_a1) < Math.Abs(a1M - old_a1))
            {
                a1 = a1U;
            }
            if (Math.Abs(a1L - a1) < Math.Abs(a1M - a1))
            {
                a1 = a1L;
            }
            double a2U = turns_a2 * ChMaths.CH_C_2PI + periodic_a2 + ChMaths.CH_C_2PI;
            double a2M = turns_a2 * ChMaths.CH_C_2PI + periodic_a2;
            double a2L = turns_a2 * ChMaths.CH_C_2PI + periodic_a2 - ChMaths.CH_C_2PI;

            a2 = a2M;
            if (Math.Abs(a2U - old_a2) < Math.Abs(a2M - old_a2))
            {
                a2 = a2U;
            }
            if (Math.Abs(a2L - a2) < Math.Abs(a2M - a2))
            {
                a2 = a2L;
            }

            // correct marker positions if phasing is not correct
            double m_delta = 0;

            if (checkphase)
            {
                double realtau = tau;

                m_delta = a1 - phase - (a2 / realtau);

                if (m_delta > ChMaths.CH_C_PI)
                {
                    m_delta -= (ChMaths.CH_C_2PI);  // range -180..+180 is better than 0...360
                }
                if (m_delta > (ChMaths.CH_C_PI / 4.0))
                {
                    m_delta = (ChMaths.CH_C_PI / 4.0);  // phase correction only in +/- 45°
                }
                if (m_delta < -(ChMaths.CH_C_PI / 4.0))
                {
                    m_delta = -(ChMaths.CH_C_PI / 4.0);
                }
                //***TODO***
            }

            // Move markers 1 and 2 to align them as pulley ends

            ChVector d21_w = dcc_w - Get_shaft_dir1() * ChVector.Vdot(Get_shaft_dir1(), dcc_w);
            ChVector D21_w = ChVector.Vnorm(d21_w);

            shaft_dist = d21_w.Length();

            ChVector U1_w = ChVector.Vcross(Get_shaft_dir1(), D21_w);

            double gamma1 = Math.Acos((r1 - r2) / shaft_dist);

            ChVector Ru_w = D21_w * Math.Cos(gamma1) + U1_w * Math.Sin(gamma1);
            ChVector Rl_w = D21_w * Math.Cos(gamma1) - U1_w * Math.Sin(gamma1);

            belt_up1  = Get_shaft_pos1() + Ru_w * r1;
            belt_low1 = Get_shaft_pos1() + Rl_w * r1;
            belt_up2  = Get_shaft_pos1() + d21_w + Ru_w * r2;
            belt_low2 = Get_shaft_pos1() + d21_w + Rl_w * r2;

            // marker alignment
            ChMatrix33 <double> maU = new ChMatrix33 <double>(0);
            ChMatrix33 <double> maL = new ChMatrix33 <double>(0);

            ChVector Dxu = ChVector.Vnorm(belt_up2 - belt_up1);
            ChVector Dyu = Ru_w;
            ChVector Dzu = ChVector.Vnorm(ChVector.Vcross(Dxu, Dyu));

            Dyu = ChVector.Vnorm(ChVector.Vcross(Dzu, Dxu));
            maU.Set_A_axis(Dxu, Dyu, Dzu);

            // ! Require that the BDF routine of marker won't handle speed and acc.calculus of the moved marker 2!
            marker2.SetMotionType(ChMarker.eChMarkerMotion.M_MOTION_EXTERNAL);
            marker1.SetMotionType(ChMarker.eChMarkerMotion.M_MOTION_EXTERNAL);

            ChCoordsys newmarkpos = new ChCoordsys();

            // move marker1 in proper positions
            newmarkpos.pos = this.belt_up1;
            newmarkpos.rot = maU.Get_A_quaternion();
            marker1.Impose_Abs_Coord(newmarkpos);  // move marker1 into teeth position
                                                   // move marker2 in proper positions
            newmarkpos.pos = this.belt_up2;
            newmarkpos.rot = maU.Get_A_quaternion();
            marker2.Impose_Abs_Coord(newmarkpos);  // move marker2 into teeth position

            double phase_correction_up  = m_delta * r1;
            double phase_correction_low = -phase_correction_up;
            double hU = ChVector.Vlength(belt_up2 - belt_up1) + phase_correction_up;
            double hL = ChVector.Vlength(belt_low2 - belt_low1) + phase_correction_low;

            // imposed relative positions/speeds
            deltaC.pos      = new ChVector(-hU, 0, 0);
            deltaC_dt.pos   = ChVector.VNULL;
            deltaC_dtdt.pos = ChVector.VNULL;

            deltaC.rot      = ChQuaternion.QUNIT; // no relative rotations imposed!
            deltaC_dt.rot   = ChQuaternion.QNULL;
            deltaC_dtdt.rot = ChQuaternion.QNULL;
        }
Exemplo n.º 5
0
        /// Updates motion laws, etc. for the impose rotation / impose speed modes
        public override void UpdateTime(double mytime)
        {
            // First, inherit to parent class
            base.UpdateTime(mytime);

            if (!IsActive())
            {
                return;
            }

            // DEFAULTS compute rotation vars...
            // by default for torque control..

            motion_axis    = ChVector.VECT_Z; // motion axis is always the marker2 Z axis (in m2 relative coords)
            mot_rot        = relAngle;
            mot_rot_dt     = ChVector.Vdot(relWvel, motion_axis);
            mot_rot_dtdt   = ChVector.Vdot(relWacc, motion_axis);
            mot_rerot      = mot_rot / mot_tau;
            mot_rerot_dt   = mot_rot_dt / mot_tau;
            mot_rerot_dtdt = mot_rot_dtdt / mot_tau;

            // nothing more to do here for torque control
            if (eng_mode == eCh_eng_mode.ENG_MODE_TORQUE)
            {
                return;
            }

            // If LEARN MODE, just record motion
            if (learn)
            {
                deltaC.pos      = ChVector.VNULL;
                deltaC_dt.pos   = ChVector.VNULL;
                deltaC_dtdt.pos = ChVector.VNULL;
                if (!(limit_Rx.Get_active() || limit_Ry.Get_active() || limit_Rz.Get_active()))
                {
                    deltaC.rot      = ChQuaternion.QUNIT;
                    deltaC_dt.rot   = ChQuaternion.QNULL;
                    deltaC_dtdt.rot = ChQuaternion.QNULL;
                }

                if (eng_mode == eCh_eng_mode.ENG_MODE_ROTATION)
                {
                    if (rot_funct.Get_Type() != ChFunction.FunctionType.FUNCT_RECORDER)
                    {
                        rot_funct = new ChFunction_Recorder();
                    }

                    // record point
                    double rec_rot = relAngle;  // ***TO DO*** compute also rotations with cardano mode?
                    if (impose_reducer)
                    {
                        rec_rot = rec_rot / mot_tau;
                    }
                    ChFunction_Recorder rec = (ChFunction_Recorder)rot_funct;
                    rec.AddPoint(mytime, rec_rot, 1);  // x=t
                }

                if (eng_mode == eCh_eng_mode.ENG_MODE_SPEED)
                {
                    if (spe_funct.Get_Type() != ChFunction.FunctionType.FUNCT_RECORDER)
                    {
                        spe_funct = new ChFunction_Recorder();
                    }

                    // record point
                    double rec_spe = ChVector.Vlength(relWvel);  // ***TO DO*** compute also with cardano mode?
                    if (impose_reducer)
                    {
                        rec_spe = rec_spe / mot_tau;
                    }
                    ChFunction_Recorder rec = (ChFunction_Recorder)spe_funct;
                    rec.AddPoint(mytime, rec_spe, 1);  //  x=t
                }
            }

            if (learn)
            {
                return;  // no need to go on further...--.>>>
            }
            // Impose relative positions/speeds

            deltaC.pos      = ChVector.VNULL;
            deltaC_dt.pos   = ChVector.VNULL;
            deltaC_dtdt.pos = ChVector.VNULL;

            if (eng_mode == eCh_eng_mode.ENG_MODE_ROTATION)
            {
                if (impose_reducer)
                {
                    mot_rerot      = rot_funct.Get_y(ChTime);
                    mot_rerot_dt   = rot_funct.Get_y_dx(ChTime);
                    mot_rerot_dtdt = rot_funct.Get_y_dxdx(ChTime);
                    mot_rot        = mot_rerot * mot_tau;
                    mot_rot_dt     = mot_rerot_dt * mot_tau;
                    mot_rot_dtdt   = mot_rerot_dtdt * mot_tau;
                }
                else
                {
                    mot_rot        = rot_funct.Get_y(ChTime);
                    mot_rot_dt     = rot_funct.Get_y_dx(ChTime);
                    mot_rot_dtdt   = rot_funct.Get_y_dxdx(ChTime);
                    mot_rerot      = mot_rot / mot_tau;
                    mot_rerot_dt   = mot_rot_dt / mot_tau;
                    mot_rerot_dtdt = mot_rot_dtdt / mot_tau;
                }
                deltaC.rot      = ChQuaternion.Q_from_AngAxis2(mot_rot, motion_axis);
                deltaC_dt.rot   = ChQuaternion.Qdt_from_AngAxis(deltaC.rot, mot_rot_dt, motion_axis);
                deltaC_dtdt.rot = ChQuaternion.Qdtdt_from_AngAxis(mot_rot_dtdt, motion_axis, deltaC.rot, deltaC_dt.rot);
            }

            if (eng_mode == eCh_eng_mode.ENG_MODE_SPEED)
            {
                if (impose_reducer)
                {
                    mot_rerot_dt   = spe_funct.Get_y(ChTime);
                    mot_rerot_dtdt = spe_funct.Get_y_dx(ChTime);
                    mot_rot_dt     = mot_rerot_dt * mot_tau;
                    mot_rot_dtdt   = mot_rerot_dtdt * mot_tau;
                }
                else
                {
                    mot_rot_dt     = spe_funct.Get_y(ChTime);
                    mot_rot_dtdt   = spe_funct.Get_y_dx(ChTime);
                    mot_rerot_dt   = mot_rot_dt / mot_tau;
                    mot_rerot_dtdt = mot_rot_dtdt / mot_tau;
                }
                deltaC.rot = ChQuaternion.Qnorm(GetRelM().rot); // just keep current position, -assume always good after integration-.
                ChMatrix33 <double> relA = new ChMatrix33 <double>(0);
                relA.Set_A_quaternion(GetRelM().rot);           // ..but adjust to keep Z axis aligned to shaft, anyway!
                ChVector displaced_z_axis = relA.Get_A_Zaxis();
                ChVector adjustment       = ChVector.Vcross(displaced_z_axis, ChVector.VECT_Z);
                deltaC.rot      = ChQuaternion.Q_from_AngAxis2(ChVector.Vlength(adjustment), ChVector.Vnorm(adjustment)) % deltaC.rot;
                deltaC_dt.rot   = ChQuaternion.Qdt_from_AngAxis(deltaC.rot, mot_rot_dt, motion_axis);
                deltaC_dtdt.rot = ChQuaternion.Qdtdt_from_AngAxis(mot_rot_dtdt, motion_axis, deltaC.rot, deltaC_dt.rot);
            }
        }
Exemplo n.º 6
0
        //
        // UPDATING FUNCTIONS
        //

        /// Perform the update of this joint at the specified time: compute jacobians,
        /// raint violations, etc. and cache in internal structures
        public override void update(double time, bool update_assets = true)
        {
            // Inherit time changes of parent class (ChLink)
            base.update(time, update_assets);

            // Express the body locations and direction in absolute frame
            ChVector pos1_abs = Body1.TransformPointLocalToParent(m_pos1);
            ChVector pos2_abs = Body2.TransformPointLocalToParent(m_pos2);
            ChVector dir1_abs = Body1.TransformDirectionLocalToParent(m_dir1);
            ChVector d12_abs  = pos2_abs - pos1_abs;

            // Update current distance and dot product
            m_cur_dist = d12_abs.Length();
            m_cur_dot  = ChVector.Vdot(d12_abs, dir1_abs);

            // Calculate a unit vector in the direction d12, expressed in absolute frame
            // Then express it in the two body frames
            ChVector u12_abs  = d12_abs / m_cur_dist;
            ChVector u12_loc1 = Body1.TransformDirectionParentToLocal(u12_abs);
            ChVector u12_loc2 = Body2.TransformDirectionParentToLocal(u12_abs);

            // Express the direction vector in the frame of body 2
            ChVector dir1_loc2 = Body2.TransformDirectionParentToLocal(dir1_abs);

            // Cache violation of the distance constraint
            m_C.matrix.SetElement(0, 0, m_cur_dist - m_dist);

            // Compute Jacobian of the distance constraint
            //    ||pos2_abs - pos1_abs|| - dist = 0
            {
                ChVector Phi_r1  = -u12_abs;
                ChVector Phi_pi1 = ChVector.Vcross(u12_loc1, m_pos1);

                m_cnstr_dist.Get_Cq_a().ElementN(0) = Phi_r1.x;
                m_cnstr_dist.Get_Cq_a().ElementN(1) = Phi_r1.y;
                m_cnstr_dist.Get_Cq_a().ElementN(2) = Phi_r1.z;

                m_cnstr_dist.Get_Cq_a().ElementN(3) = Phi_pi1.x;
                m_cnstr_dist.Get_Cq_a().ElementN(4) = Phi_pi1.y;
                m_cnstr_dist.Get_Cq_a().ElementN(5) = Phi_pi1.z;

                ChVector Phi_r2  = u12_abs;
                ChVector Phi_pi2 = -ChVector.Vcross(u12_loc2, m_pos2);

                m_cnstr_dist.Get_Cq_b().ElementN(0) = Phi_r2.x;
                m_cnstr_dist.Get_Cq_b().ElementN(1) = Phi_r2.y;
                m_cnstr_dist.Get_Cq_b().ElementN(2) = Phi_r2.z;

                m_cnstr_dist.Get_Cq_b().ElementN(3) = Phi_pi2.x;
                m_cnstr_dist.Get_Cq_b().ElementN(4) = Phi_pi2.y;
                m_cnstr_dist.Get_Cq_b().ElementN(5) = Phi_pi2.z;
            }

            // Cache violation of the dot constraint
            m_C.matrix.SetElement(1, 0, m_cur_dot);

            // Compute Jacobian of the dot constraint
            //    dot(dir1_abs, pos2_abs - pos1_abs) = 0
            {
                ChVector Phi_r1  = -dir1_abs;
                ChVector Phi_pi1 = ChVector.Vcross(m_dir1, m_pos1) - ChVector.Vcross(u12_loc1, m_pos1);

                m_cnstr_dot.Get_Cq_a().ElementN(0) = Phi_r1.x;
                m_cnstr_dot.Get_Cq_a().ElementN(1) = Phi_r1.y;
                m_cnstr_dot.Get_Cq_a().ElementN(2) = Phi_r1.z;

                m_cnstr_dot.Get_Cq_a().ElementN(3) = Phi_pi1.x;
                m_cnstr_dot.Get_Cq_a().ElementN(4) = Phi_pi1.y;
                m_cnstr_dot.Get_Cq_a().ElementN(5) = Phi_pi1.z;

                ChVector Phi_r2  = dir1_abs;
                ChVector Phi_pi2 = -ChVector.Vcross(dir1_loc2, m_pos2);

                m_cnstr_dot.Get_Cq_b().ElementN(0) = Phi_r2.x;
                m_cnstr_dot.Get_Cq_b().ElementN(1) = Phi_r2.y;
                m_cnstr_dot.Get_Cq_b().ElementN(2) = Phi_r2.z;

                m_cnstr_dot.Get_Cq_b().ElementN(3) = Phi_pi2.x;
                m_cnstr_dot.Get_Cq_b().ElementN(4) = Phi_pi2.y;
                m_cnstr_dot.Get_Cq_b().ElementN(5) = Phi_pi2.z;
            }
        }
Exemplo n.º 7
0
        // Updates motion laws, marker positions, etc.
        public override void UpdateTime(double mytime)
        {
            // First, inherit to parent class
            base.UpdateTime(mytime);

            // If LEARN MODE, just record motion
            if (learn)
            {
                /*   do not change deltas, in free mode maybe that 'limit on X' changed them
                 * deltaC.pos = VNULL;
                 * deltaC_dt.pos = VNULL;
                 * deltaC_dtdt.pos = VNULL;
                 * deltaC.rot = QUNIT;
                 * deltaC_dt.rot = QNULL;
                 * deltaC_dtdt.rot = QNULL;
                 */
                // if (dist_funct.Get_Type() != ChFunction.FunctionType.FUNCT_RECORDER)
                //   dist_funct = new ChFunction_Recorder();

                // record point
                double rec_dist = ChVector.Vlength(ChVector.Vsub(marker1.GetAbsCoord().pos, marker2.GetAbsCoord().pos));
                rec_dist -= offset;
                // (ChFunction_Recorder)(dist_funct).AddPoint(mytime, rec_dist, 1);  // (x,y,w)  x=t
            }

            // Move (well, rotate...) marker 2 to align it in actuator direction

            // ! Require that the BDF routine of marker won't handle speed and acc.calculus of the moved marker 2!
            marker2.SetMotionType(ChMarker.eChMarkerMotion.M_MOTION_EXTERNAL);

            // ChMatrix33<double> ma = new ChMatrix33<double>(0);
            ma.Set_A_quaternion(marker2.GetAbsCoord().rot);
            ChVector absdist = ChVector.Vsub(marker1.GetAbsCoord().pos, marker2.GetAbsCoord().pos);

            ChVector mx = ChVector.Vnorm(absdist);

            ChVector my = ma.Get_A_Yaxis();

            if (ChVector.Vequal(mx, my))
            {
                if (mx.x == 1.0)
                {
                    my = ChVector.VECT_Y;
                }
                else
                {
                    my = ChVector.VECT_X;
                }
            }
            ChVector mz = ChVector.Vnorm(ChVector.Vcross(mx, my));

            my = ChVector.Vnorm(ChVector.Vcross(mz, mx));

            ma.Set_A_axis(mx, my, mz);

            ChCoordsys newmarkpos;
            ChVector   oldpos = marker2.FrameMoving.GetPos(); // backup to avoid numerical err.accumulation

            newmarkpos.pos = marker2.GetAbsCoord().pos;
            newmarkpos.rot = ma.Get_A_quaternion();

            marker2.Impose_Abs_Coord(newmarkpos);  // rotate "main" marker2 into tangent position (may add err.accumulation)
            marker2.FrameMoving.SetPos(oldpos);    // backup to avoid numerical err.accumulation

            if (learn)
            {
                return;  // no need to go on further...--.>>>
            }
            // imposed relative positions/speeds
            deltaC.pos   = ChVector.VNULL;
            deltaC.pos.x = dist_funct.Get_y(ChTime) + offset;  // distance is always on M2 'X' axis

            deltaC_dt.pos   = ChVector.VNULL;
            deltaC_dt.pos.x = dist_funct.Get_y_dx(ChTime);  // distance speed

            deltaC_dtdt.pos   = ChVector.VNULL;
            deltaC_dtdt.pos.x = dist_funct.Get_y_dxdx(ChTime);  // distance acceleration
                                                                // add also the centripetal acceleration if distance vector's rotating,
                                                                // as centripetal acc. of point sliding on a sphere surface.
            ChVector tang_speed = GetRelM_dt().pos;

            tang_speed.x = 0;                               // only z-y coords in relative tang speed vector
            double len_absdist = ChVector.Vlength(absdist); // don't divide by zero

            if (len_absdist > 1E-6)
            {
                deltaC_dtdt.pos.x -= Math.Pow(ChVector.Vlength(tang_speed), 2) / ChVector.Vlength(absdist); // An = Adelta -(Vt^2 / r)
            }
            deltaC.rot      = ChQuaternion.QUNIT;                                                           // no relative rotations imposed!
            deltaC_dt.rot   = ChQuaternion.QNULL;
            deltaC_dtdt.rot = ChQuaternion.QNULL;

            // Compute motor variables
            // double m_rotation;
            // double m_torque;
            mot_rerot      = (deltaC.pos.x - offset) / mot_tau;
            mot_rerot_dt   = deltaC_dt.pos.x / mot_tau;
            mot_rerot_dtdt = deltaC_dtdt.pos.x / mot_tau;
            mot_retorque   = mot_rerot_dtdt * mot_inertia + (react_force.x * mot_tau) / mot_eta;
            //  m_rotation = (deltaC.pos.x() - offset) / mot_tau;
            //  m_torque =  (deltaC_dtdt.pos.x() / mot_tau) * mot_inertia + (react_force.x() * mot_tau) / mot_eta;

            if (learn_torque_rotation)
            {
                // if (mot_torque.Get_Type() != ChFunction.FunctionType.FUNCT_RECORDER)
                //    mot_torque = new ChFunction_Recorder();

                // if (mot_rot.Get_Type() != ChFunction.FunctionType.FUNCT_RECORDER)
                //    mot_rot = new ChFunction_Recorder();

                // std::static_pointer_cast<ChFunction_Recorder>(mot_torque).AddPoint(mytime, mot_retorque, 1);  // (x,y,w)  x=t
                // std::static_pointer_cast<ChFunction_Recorder>(mot_rot).AddPoint(mytime, mot_rerot, 1);        // (x,y,w)  x=t
            }
        }
Exemplo n.º 8
0
        // Updates motion laws, marker positions, etc.
        public override void UpdateTime(double mytime)
        {
            // First, inherit to parent class
            base.UpdateTime(mytime);

            // Move markers 1 and 2 to align them as gear teeth

            ChMatrix33 <double> ma1        = new ChMatrix33 <double>(0);
            ChMatrix33 <double> ma2        = new ChMatrix33 <double>(0);
            ChMatrix33 <double> mrotma     = new ChMatrix33 <double>(0);
            ChMatrix33 <double> marot_beta = new ChMatrix33 <double>(0);
            ChVector            mx;
            ChVector            my;
            ChVector            mz;
            ChVector            mr;
            ChVector            mmark1;
            ChVector            mmark2;
            ChVector            lastX;
            ChVector            vrota;
            ChCoordsys          newmarkpos = new ChCoordsys(new ChVector(0, 0, 0), new ChQuaternion(1, 0, 0, 0));

            ChFrame <double> abs_shaft1 = ChFrame <double> .FNULL; // new ChFrame<double>();
            ChFrame <double> abs_shaft2 = ChFrame <double> .FNULL; //new ChFrame<double>();

            ((ChFrame <double>)Body1).TransformLocalToParent(local_shaft1, abs_shaft1);
            ((ChFrame <double>)Body2).TransformLocalToParent(local_shaft2, abs_shaft2);

            ChVector vbdist = ChVector.Vsub(Get_shaft_pos1(), Get_shaft_pos2());
            // ChVector Trad1 = ChVector.Vnorm(ChVector.Vcross(Get_shaft_dir1(), ChVector.Vnorm(ChVector.Vcross(Get_shaft_dir1(), vbdist))));
            // ChVector Trad2 = ChVector.Vnorm(ChVector.Vcross(ChVector.Vnorm(ChVector.Vcross(Get_shaft_dir2(), vbdist)), Get_shaft_dir2()));

            double dist = ChVector.Vlength(vbdist);

            // compute actual rotation of the two wheels (relative to truss).
            ChVector md1 = abs_shaft1.GetA().MatrT_x_Vect(-vbdist);

            md1.z = 0;
            md1   = ChVector.Vnorm(md1);
            ChVector md2 = abs_shaft2.GetA().MatrT_x_Vect(-vbdist);

            md2.z = 0;
            md2   = ChVector.Vnorm(md2);

            double periodic_a1 = ChMaths.ChAtan2(md1.x, md1.y);
            double periodic_a2 = ChMaths.ChAtan2(md2.x, md2.y);
            double old_a1      = a1;
            double old_a2      = a2;
            double turns_a1    = Math.Floor(old_a1 / ChMaths.CH_C_2PI);
            double turns_a2    = Math.Floor(old_a2 / ChMaths.CH_C_2PI);
            double a1U         = turns_a1 * ChMaths.CH_C_2PI + periodic_a1 + ChMaths.CH_C_2PI;
            double a1M         = turns_a1 * ChMaths.CH_C_2PI + periodic_a1;
            double a1L         = turns_a1 * ChMaths.CH_C_2PI + periodic_a1 - ChMaths.CH_C_2PI;

            a1 = a1M;
            if (Math.Abs(a1U - old_a1) < Math.Abs(a1M - old_a1))
            {
                a1 = a1U;
            }
            if (Math.Abs(a1L - a1) < Math.Abs(a1M - a1))
            {
                a1 = a1L;
            }
            double a2U = turns_a2 * ChMaths.CH_C_2PI + periodic_a2 + ChMaths.CH_C_2PI;
            double a2M = turns_a2 * ChMaths.CH_C_2PI + periodic_a2;
            double a2L = turns_a2 * ChMaths.CH_C_2PI + periodic_a2 - ChMaths.CH_C_2PI;

            a2 = a2M;
            if (Math.Abs(a2U - old_a2) < Math.Abs(a2M - old_a2))
            {
                a2 = a2U;
            }
            if (Math.Abs(a2L - a2) < Math.Abs(a2M - a2))
            {
                a2 = a2L;
            }

            // compute new markers coordsystem alignment
            my = ChVector.Vnorm(vbdist);
            mz = Get_shaft_dir1();
            mx = ChVector.Vnorm(ChVector.Vcross(my, mz));
            mr = ChVector.Vnorm(ChVector.Vcross(mz, mx));
            mz = ChVector.Vnorm(ChVector.Vcross(mx, my));
            ChVector mz2, mx2, mr2, my2;

            my2 = my;
            mz2 = Get_shaft_dir2();
            mx2 = ChVector.Vnorm(ChVector.Vcross(my2, mz2));
            mr2 = ChVector.Vnorm(ChVector.Vcross(mz2, mx2));

            ma1.Set_A_axis(mx, my, mz);

            // rotate csys because of beta
            vrota.x = 0.0;
            vrota.y = beta;
            vrota.z = 0.0;
            mrotma.Set_A_Rxyz(vrota);
            marot_beta.nm.matrix.MatrMultiply(ma1.nm.matrix, mrotma.nm.matrix);
            // rotate csys because of alpha
            vrota.x = 0.0;
            vrota.y = 0.0;
            vrota.z = alpha;
            if (react_force.x < 0)
            {
                vrota.z = alpha;
            }
            else
            {
                vrota.z = -alpha;
            }
            mrotma.Set_A_Rxyz(vrota);
            ma1.nm.matrix.MatrMultiply(marot_beta.nm.matrix, mrotma.nm.matrix);

            ma2.nm.matrix.CopyFromMatrix(ma1.nm.matrix);

            // is a bevel gear?
            double be       = Math.Acos(ChVector.Vdot(Get_shaft_dir1(), Get_shaft_dir2()));
            bool   is_bevel = true;

            if (Math.Abs(ChVector.Vdot(Get_shaft_dir1(), Get_shaft_dir2())) > 0.96)
            {
                is_bevel = false;
            }

            // compute wheel radii so that:
            //            w2 = - tau * w1
            if (!is_bevel)
            {
                double pardist = ChVector.Vdot(mr, vbdist);
                double inv_tau = 1.0 / tau;
                if (!epicyclic)
                {
                    r2 = pardist - pardist / (inv_tau + 1.0);
                }
                else
                {
                    r2 = pardist - (tau * pardist) / (tau - 1.0);
                }
                r1 = r2 * tau;
            }
            else
            {
                double gamma2;
                if (!epicyclic)
                {
                    gamma2 = be / (tau + 1.0);
                }
                else
                {
                    gamma2 = be / (-tau + 1.0);
                }
                double al = ChMaths.CH_C_PI - Math.Acos(ChVector.Vdot(Get_shaft_dir2(), my));
                double te = ChMaths.CH_C_PI - al - be;
                double fd = Math.Sin(te) * (dist / Math.Sin(be));
                r2 = fd * Math.Tan(gamma2);
                r1 = r2 * tau;
            }

            // compute markers positions, supposing they
            // stay on the ideal wheel contact point
            mmark1     = ChVector.Vadd(Get_shaft_pos2(), ChVector.Vmul(mr2, r2));
            mmark2     = mmark1;
            contact_pt = mmark1;

            // correct marker 1 position if phasing is not correct
            if (checkphase)
            {
                double realtau = tau;
                if (epicyclic)
                {
                    realtau = -tau;
                }
                double m_delta;
                m_delta = -(a2 / realtau) - a1 - phase;

                if (m_delta > ChMaths.CH_C_PI)
                {
                    m_delta -= (ChMaths.CH_C_2PI);  // range -180..+180 is better than 0...360
                }
                if (m_delta > (ChMaths.CH_C_PI / 4.0))
                {
                    m_delta = (ChMaths.CH_C_PI / 4.0);  // phase correction only in +/- 45°
                }
                if (m_delta < -(ChMaths.CH_C_PI / 4.0))
                {
                    m_delta = -(ChMaths.CH_C_PI / 4.0);
                }

                vrota.x = vrota.y = 0.0;
                vrota.z = -m_delta;
                mrotma.Set_A_Rxyz(vrota);  // rotate about Z of shaft to correct
                mmark1 = abs_shaft1.GetA().MatrT_x_Vect(ChVector.Vsub(mmark1, Get_shaft_pos1()));
                mmark1 = mrotma.Matr_x_Vect(mmark1);
                mmark1 = ChVector.Vadd(abs_shaft1.GetA().Matr_x_Vect(mmark1), Get_shaft_pos1());
            }
            // Move Shaft 1 along its direction if not aligned to wheel
            double   offset = ChVector.Vdot(Get_shaft_dir1(), (contact_pt - Get_shaft_pos1()));
            ChVector moff   = Get_shaft_dir1() * offset;

            if (Math.Abs(offset) > 0.0001)
            {
                local_shaft1.SetPos(local_shaft1.GetPos() + Body1.TransformDirectionParentToLocal(moff));
            }

            // ! Require that the BDF routine of marker won't handle speed and acc.calculus of the moved marker 2!
            marker2.SetMotionType(ChMarker.eChMarkerMotion.M_MOTION_EXTERNAL);
            marker1.SetMotionType(ChMarker.eChMarkerMotion.M_MOTION_EXTERNAL);

            // move marker1 in proper positions
            newmarkpos.pos = mmark1;
            newmarkpos.rot = ma1.Get_A_quaternion();
            marker1.Impose_Abs_Coord(newmarkpos);  // move marker1 into teeth position
                                                   // move marker2 in proper positions
            newmarkpos.pos = mmark2;
            newmarkpos.rot = ma2.Get_A_quaternion();
            marker2.Impose_Abs_Coord(newmarkpos);  // move marker2 into teeth position

            // imposed relative positions/speeds
            deltaC.pos      = ChVector.VNULL;
            deltaC_dt.pos   = ChVector.VNULL;
            deltaC_dtdt.pos = ChVector.VNULL;

            deltaC.rot      = ChQuaternion.QUNIT; // no relative rotations imposed!
            deltaC_dt.rot   = ChQuaternion.QNULL;
            deltaC_dtdt.rot = ChQuaternion.QNULL;
        }