Exemplo n.º 1
0
        // Covering
        public SigmaNormalClassifier( State S, List<char> Actions, int ExpThreshold )
        {
            // Covering済みConditionセット
            this.C = S;
            // MatchSetにない行動をランダムに選ぶ
            this.A = Actions[Configuration.MT.Next( Actions.Count - 1 )];

            this.P = Configuration.P_I;
            this.Epsilon = Configuration.Epsilon_I;
            this.F = Configuration.F_I;
            this.Exp = 0;
            this.Ts = Configuration.T;
            this.As = 1;
            this.N = 1;
            this.Epsilon_0 = Configuration.Epsilon_0;
            this.St = 0;
            this.M = 0;
            this.S = 0;
            this.GenerateTime = Configuration.T;
            this.ExpThreshold = ExpThreshold;
            this.EpsilonList = new double[Configuration.LookBackEpsilon + 1];
            this.WinningRate = new double[Configuration.LookBackEpsilon];
            // はじめは消されにくいように
            for(int i = 0; i < this.WinningRate.Count(); i++)
            {
                this.WinningRate[i] = Configuration.F_I;
            }
            this.ConvergenceFlag = false;
        }
Exemplo n.º 2
0
 /// <summary>
 /// すべての取り得るStateを生成
 /// </summary>
 /// <param name="Length">Multiplexerの長さ</param>
 /// <returns>すべての取り得るState</returns>
 public static State[] AllState( int Length )
 {
     State[] All = new State[( int )Math.Pow( 2, Length )];
     for( int i = 0; i < All.Length; i++ )
     {
         string S = Convert.ToString( i, 2 );
         // 頭に足りない分0を付加
         while( S.Length < Length )
         {
             S = "0" + S;
         }
         All[i] = new BinaryState( S );
     }
     return All;
 }
Exemplo n.º 3
0
        // situationに合うものをPopulationから取り、足りないときはCovering
        protected override void Covering( State S, Population P )
        {
            while( this.CList.Count == 0 )
            {
                // situationにあうものをPopulationから探す
                this.CList = P.MatchSituation( S );

                // Actionの種類
                List<char> Actions = new List<char>();
                int NumberOfActions = 0;

                // Multiplexer(2進数)
                if( Configuration.Type == "Binary" )
                {
                    Actions.Add( '0' );
                    Actions.Add( '1' );
                    foreach( Classifier C in this.CList )
                    {
                        Actions.Remove( C.A );
                    }
                    NumberOfActions = 2 - Actions.Count;
                }

                // MatchSetにある行動が少ないとき
                if( NumberOfActions < Configuration.Theta_mna )
                {
                    // 一部を変化させたCondition
                    State state = new BinaryState( S );
                    state.Covering();

                    Classifier CC;
                    if( Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS" )
                    {
                        CC = new SigmaNormalClassifier( state, Actions, Configuration.ExpThreshold );
                    }
                    else
                    {
                        CC = new NormalClassifier( state, Actions );
                    }
                    P.Add( CC );
                    // 整理
                    P.Delete();
                    this.CList = new List<Classifier>();
                }
            }
        }
Exemplo n.º 4
0
        // Covering
        public NormalClassifier( State S, List<char> Actions )
        {
            // Covering済みConditionセット
            this.C = S;
            // MatchSetにない行動をランダムに選ぶ
            this.A = Actions[Configuration.MT.Next( Actions.Count - 1 )];

            this.P = Configuration.P_I;
            this.Epsilon = Configuration.Epsilon_I;
            this.F = Configuration.F_I;
            this.Exp = 0;
            this.Ts = Configuration.T;
            this.As = 1;
            this.N = 1;
            this.Epsilon_0 = Configuration.Epsilon_0;
            this.St = 0;
            this.M = 0;
            this.S = 0;
            this.GenerateTime = Configuration.T;
        }
        public NormalClassifier(State S)
        {
            // Covering済みConditionセット
            this.C = S;
            //action がない問題
            //this.A = Actions[Configuration.MT.Next(Actions.Count - 1)];

            this.P = Configuration.P_I;
            this.Epsilon = Configuration.Epsilon_I;
            this.F = Configuration.F_I;
            this.Exp = 0;
            this.Ts = Configuration.T;
            this.As = 1;
            this.N = 1;
            this.Epsilon_0 = Configuration.Epsilon_0;
            this.St = 0;
            this.M = 0;
            this.S = 0;
            this.GenerateTime = Configuration.T;
        }
Exemplo n.º 6
0
 /// <summary>
 /// GA
 /// </summary>
 /// <param name="Situation">situation</param>
 /// <param name="P">Population</param>
 public abstract void RunGA( State Situation, Population P );
Exemplo n.º 7
0
 // situationに合うものをPopulationから取り、足りないときはCovering
 protected override void Covering( State S, Population P )
 {
 }
Exemplo n.º 8
0
 public NotCoveringMatchSet( State S, Population P )
 {
     this.CList = new List<Classifier>();
     this.CList = P.MatchSituation( S );
 }
Exemplo n.º 9
0
        public override void Mutation( State S )
        {
            int i = 0;

            string state = "";
            do
            {
                if( Configuration.MT.NextDouble() < Configuration.Myu )
                {
                    // #とstateの切り替え
                    if( this.C.state[i] == '#' )
                    {
                        state += S.state[i];
                    }
                    else
                    {
                        state += '#';
                    }
                }
                else
                {
                    state += this.C.state[i];
                }
                i++;
            } while( i < this.C.state.Length );
            this.C.state = state;
            this.C.CountSharp();

            if( Configuration.MT.NextDouble() < Configuration.Myu )
            {
                if( Configuration.Type == "Binary" )
                {
                    this.A = ( this.A == '0' ) ? '1' : '0';
                }
            }
        }
Exemplo n.º 10
0
 //// #の数
 //abstract public int NumberOfSharp();
 /// <summary>
 /// i番目の要素を自分とSで入れ替える
 /// </summary>
 /// <param name="S">入れ替え対象</param>
 /// <param name="i">入れ替える場所</param>
 public abstract void Switch( State S, int i );
Exemplo n.º 11
0
        //public override int NumberOfSharp()
        //{
        //    int n = 0;
        //    for(int i = 0; i < this.state.Length; i++)
        //    {
        //        if(this.state[i] == '#')
        //        {
        //            n++;
        //        }
        //    }
        //    return n;
        //}
        // i番目を入れ替え
        public override void Switch( State S, int i )
        {
            string t = "";
            string s = "";

            for( int j = 0; j < this.Length; j++ )
            {
                if( i == j )
                {
                    t += S.state[j];
                    s += this.state[j];
                }
                else
                {
                    t += this.state[j];
                    s += S.state[j];
                }
            }

            this.state = t;
            S.state = s;

            this.CountSharp();
            S.CountSharp();
        }
Exemplo n.º 12
0
 /// <summary>
 /// situationに一致するClassifierをMatchSetに渡す
 /// </summary>
 /// <param name="S">situation</param>
 /// <returns>situationに一致するClassifierの集合</returns>
 public abstract List<Classifier> MatchSituation( State S );
Exemplo n.º 13
0
 /// <summary>
 /// situationに基づく突然変異
 /// </summary>
 /// <param name="S">situation</param>
 public abstract void Mutation( State S );
        public override void RunGA( State Situation, Population P )
        {
            double NumerositySum = 0.0;
            double TimeStampSum = 0.0;

            foreach( Classifier C in this.CList )
            {
                NumerositySum += C.N;
                TimeStampSum += C.Ts * C.N;
            }

            if( Configuration.T - TimeStampSum / NumerositySum > Configuration.Theta_GA )
            {
                foreach( Classifier C in this.CList )
                {
                    C.Ts = Configuration.T;
                }

                Classifier Parent_1 = this.SelectOffspring();
                Classifier Parent_2 = this.SelectOffspring();
                Classifier Child_1 = new NormalClassifier( ( NormalClassifier )Parent_1 );
                Classifier Child_2 = new NormalClassifier( ( NormalClassifier )Parent_2 );
                Child_1.N = Child_2.N = 1;
                Child_1.Exp = Child_2.Exp = 0;
                Child_1.St = Child_2.St = 0;
                Child_1.M = Child_2.M = 0;
                Child_1.S = Child_2.S = 0;

                if( Configuration.MT.NextDouble() < Configuration.Chai )
                {
                    Child_1.Crossover( Child_2 );
                    Child_1.P = ( Parent_1.P + Parent_2.P ) / 2;
                    Child_1.Epsilon = ( Parent_1.Epsilon + Parent_2.Epsilon ) / 2;
                    Child_1.F = ( Parent_1.F + Parent_2.F ) / 2;
                    //Child_1.M = ( Parent_1.M + Parent_2.M ) / 2;
                    //Child_1.S = ( Parent_1.S + Parent_2.S ) / 2;
                    Child_2.P = Child_1.P;
                    Child_2.Epsilon = Child_1.Epsilon;
                    Child_2.F = Child_1.F;
                    //Child_2.M = Child_1.M;
                    //Child_2.S = Child_1.S;
                }

                Child_1.F *= 0.1;
                Child_2.F *= 0.1;

                // bothChild
                Child_1.Mutation( Situation );
                Child_2.Mutation( Situation );

                if( Configuration.DoGASubsumption )
                {
                    if( Parent_1.DoesSubsume( Child_1 ) )
                    {
                        Parent_1.N++;
                    }
                    else if( Parent_2.DoesSubsume( Child_1 ) )
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert( Child_1 );
                    }
                    P.Delete();

                    if( Parent_1.DoesSubsume( Child_2 ) )
                    {
                        Parent_1.N++;
                    }
                    else if( Parent_2.DoesSubsume( Child_2 ) )
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert( Child_2 );
                    }
                    P.Delete();
                }
                else
                {
                    P.Insert( Child_1 );
                    P.Delete();
                    P.Insert( Child_2 );
                    P.Delete();
                }

            }
        }
        // Situationに合ったClassifierをMatchSetに渡す
        public override List<Classifier> MatchSituation( State S )
        {
            List<Classifier> MatchSet = new List<Classifier>();

            foreach( Classifier C in this.CList )
            {
                if( S.Match( C.C ) )
                {
                    MatchSet.Add( C );
                }
            }

            return MatchSet;
        }
Exemplo n.º 16
0
        public override void RunGA( State Situation, Population P )
        {
            double NumerositySum = 0.0;
            double TimeStampSum = 0.0;

            foreach( Classifier C in this.CList )
            {
                NumerositySum += C.N;
                TimeStampSum += C.Ts * C.N;
            }

            if( Configuration.T - TimeStampSum / NumerositySum > Configuration.Theta_GA )
            {
                foreach( Classifier C in this.CList )
                {
                    C.Ts = Configuration.T;
                }

                Classifier Parent_1 = this.SelectOffspring();
                Classifier Parent_2 = this.SelectOffspring();
                Classifier Child_1 = new SigmaNormalClassifier( ( SigmaNormalClassifier )Parent_1 );
                Classifier Child_2 = new SigmaNormalClassifier( ( SigmaNormalClassifier )Parent_2 );

                ///nakata added
                Child_1.F /= Child_1.N;
                Child_2.F /= Child_2.N;
                //////////////

                Child_1.N = Child_2.N = 1;
                Child_1.Exp = Child_2.Exp = 0;
                Child_1.St = Child_2.St = 0;
                Child_1.M = Child_2.M = 0;
                Child_1.S = Child_2.S = 0;
                //Child_1.Epsilon_0 = Child_2.Epsilon_0 = Configuration.Epsilon_0;

                SigmaNormalClassifier SNP1 = ( SigmaNormalClassifier )Parent_1;
                SigmaNormalClassifier SNP2 = ( SigmaNormalClassifier )Parent_2;
                SigmaNormalClassifier SNC1 = ( SigmaNormalClassifier )Child_1;
                SigmaNormalClassifier SNC2 = ( SigmaNormalClassifier )Child_2;

                // 交叉
                if( Configuration.MT.NextDouble() < Configuration.Chai )
                {
                    Child_1.Crossover( Child_2 );
                    Child_1.P = ( Parent_1.P + Parent_2.P ) / 2;
                    //Child_1.Epsilon = Parent_1.Epsilon + Parent_2.Epsilon;
                    Child_1.Epsilon = ( Parent_1.Epsilon + Parent_2.Epsilon ) / 2;
                    Child_1.F = ( Parent_1.F + Parent_2.F ) / 2;
                    //Child_1.M = ( Parent_1.M + Parent_2.M ) / 2;
                    //Child_1.S = ( Parent_1.S + Parent_2.S ) / 2;
                    Child_1.Epsilon_0 = ( Parent_1.Epsilon_0 + Parent_2.Epsilon_0 ) / 2;
                    //Child_1.Epsilon_0 = Math.Min(Parent_1.Epsilon_0, Parent_2.Epsilon_0);
                    Child_2.P = Child_1.P;
                    Child_2.Epsilon = Child_1.Epsilon;
                    Child_2.F = Child_1.F;
                    //Child_2.M = Child_1.M;
                    //Child_2.S = Child_1.S;
                    Child_2.Epsilon_0 = Child_1.Epsilon_0;

                    for( int i = 0; i < SNC1.WinningRate.Count(); i++ )
                    {
                        SNC1.WinningRate[i] = SNC2.WinningRate[i] = ( SNP1.WinningRate[i] + SNP2.WinningRate[i] ) / 2;
                    }
                }

                Child_1.F *= 0.1;
                Child_2.F *= 0.1;

                for( int i = 0; i < SNC1.WinningRate.Count(); i++ )
                {
                    SNC1.WinningRate[i] *= 0.1;
                    SNC2.WinningRate[i] *= 0.1;
                }

                // bothChild
                Child_1.Mutation( Situation );
                Child_2.Mutation( Situation );

                if( Configuration.DoGASubsumption )
                {
                    if( Parent_1.DoesSubsume( Child_1 ) )
                    {
                        Parent_1.N++;
                    }
                    else if( Parent_2.DoesSubsume( Child_1 ) )
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert( Child_1 );
                    }
                    P.Delete();

                    if( Parent_1.DoesSubsume( Child_2 ) )
                    {
                        Parent_1.N++;
                    }
                    else if( Parent_2.DoesSubsume( Child_2 ) )
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert( Child_2 );
                    }
                    P.Delete();
                }
                else
                {
                    P.Insert( Child_1 );
                    P.Delete();
                    P.Insert( Child_2 );
                    P.Delete();
                }

            }
        }
Exemplo n.º 17
0
 public NormalMatchSet( State S, Population P )
 {
     this.CList = new List<Classifier>();
     this.Covering( S, P );
 }
Exemplo n.º 18
0
 // コピーコンストラクタ
 public BinaryState( State S )
 {
     this.state = S.state;
     this.Length = S.Length;
     this.NumberOfSharp = S.NumberOfSharp;
 }
Exemplo n.º 19
0
 /// <summary>
 /// 足りないときのCovering
 /// </summary>
 /// <param name="S">situation</param>
 /// <param name="P">Population</param>
 protected abstract void Covering( State S, Population P );
Exemplo n.º 20
0
        /// <summary>
        /// Stateに一致するか(#を考慮)
        /// </summary>
        /// <param name="S">比較対象</param>
        /// <returns>一致(true)</returns>
        public bool Match( State S )
        {
            if( this.state.Length != S.state.Length )
            {
                return false;
            }

            for( int i = 0; i < this.state.Length; i++ )
            {
                if( ( this.state[i] != S.state[i] ) && ( this.state[i] != '#' ) && ( S.state[i] != '#' ) )
                {
                    return false;
                }
            }

            return true;
        }