Exemplo n.º 1
0
        private Dictionary <string, double> makePrediction(String fileContent, SortedDictionary <string, ICategory> sd)
        {
            ExcludedWords m_ExcludedWords = new ExcludedWords();

            m_ExcludedWords.InitDefault();
            EnumerableCategory words_in_file = new EnumerableCategory("", m_ExcludedWords);

            words_in_file.TeachCategory(fileContent);//理解naive bayes后,我终于理解了,这个就是提取待分类文本的特征(即属性词)
            //万事俱备,只欠计算
            Dictionary <string, double> score = new Dictionary <string, double>();

            foreach (KeyValuePair <string, ICategory> cat in sd)
            {
                score.Add(cat.Key, 0.0);
            }


            foreach (KeyValuePair <string, int> kvp1 in words_in_file)
            {
                // PhraseCount pc_in_file = kvp1.Value;
                String words_in_predictionfile = kvp1.Key;//算P(f1=x1|s=si),其中words_in_predictionfile就是x1
                foreach (KeyValuePair <string, ICategory> kvp in sd)
                {
                    ICategory cat   = kvp.Value;
                    int       count = cat.GetPhraseCount(words_in_predictionfile);//这里每轮的words_in_predictionfile是待分类文本的特征词
                    if (0 < count)
                    {
                        score[kvp.Key] += System.Math.Log((double)count / (double)cat.TotalWords);//说到底还是按类别(cat1、cat2...)等分类统计概率,就是连乘P(f1=x1|s=si)
                    }
                    else//count==0,用0.01代替0防止log无意义
                    {
                        score[kvp.Key] += System.Math.Log(0.01 / (double)cat.TotalWords);
                    }
                    System.Diagnostics.Trace.WriteLine(words_in_predictionfile + "(" +
                                                       kvp.Key + ")" + score[kvp.Key]);
                }
            }
            int total = 0;

            foreach (Category cat in sd.Values)
            {
                total += cat.TotalWords;
            }

            foreach (KeyValuePair <string, ICategory> kvp in sd) //觉得这里写得很没意思,就是把cat1+cat2+cat3+cat4+cat5作为总和,然后分别用每个类别去除以这个总和,然后取对数
            {                                                    //更重要的,这里的含义我真不理解,签名是把每个类别的单词处于该类别的count,然后取对数,相加,然后又加上一个类别除以类别之和取对数
                //现在理解了,这就是算先验概率啊
                ICategory cat = kvp.Value;
                score[kvp.Key] += System.Math.Log((double)cat.TotalWords / (double)total);
            }
            return(score);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Classifies a text<\summary>
        /// <returns>
        /// returns classification values for the text, the higher, the better is the match.</returns>
        public Dictionary <string, double> Classify(System.IO.StreamReader tr)
        {
            //  //所以这个整个过程就是算P(f1=x1,f2=x2...fn=xn|s=si)=P(f1=x1|s=si)*P(f2=x2|s=si)....*P(fn=xn|s=si)*P(s=si)
            Dictionary <string, double> score = new Dictionary <string, double>();

            foreach (KeyValuePair <string, ICategory> cat in m_Categories)
            {
                score.Add(cat.Value.Name, 0.0);
            }

            EnumerableCategory words_in_file = new EnumerableCategory("", m_ExcludedWords);

            words_in_file.TeachCategory(tr);            //这个的含义是什么?m_Categories里已经算好了所有分类的统计啊。理解naive bayes后,我终于理解了,这个就是提取待分类文本的特征(即属性词)

            foreach (KeyValuePair <string, int> kvp1 in words_in_file)
            {
                String words_in_predictionfile = kvp1.Key;//算P(f1=x1|s=si),其中words_in_predictionfile就是x1
                foreach (KeyValuePair <string, ICategory> kvp in m_Categories)
                {
                    ICategory cat   = kvp.Value;
                    int       count = cat.GetPhraseCount(words_in_predictionfile);//这里每轮的words_in_predictionfile是待分类文本的特征词
                    if (0 < count)
                    {
                        score[cat.Name] += System.Math.Log((double)count / (double)cat.TotalWords); //说到底还是按类别(cat1、cat2...)等分类统计概率,就是连乘P(f1=x1|s=si)
                    }
                    else                                                                            //count==0,用0.01代替0防止log无意义
                    {
                        score[cat.Name] += System.Math.Log(0.01 / (double)cat.TotalWords);
                    }
                    System.Diagnostics.Trace.WriteLine(words_in_predictionfile + "(" +
                                                       cat.Name + ")" + score[cat.Name]);
                }
            }
            foreach (KeyValuePair <string, ICategory> kvp in m_Categories) //觉得这里写得很没意思,就是把cat1+cat2+cat3+cat4+cat5作为总和,然后分别用每个类别去除以这个总和,然后取对数
            {                                                              //更重要的,这里的含义我真不理解,签名是把每个类别的单词处于该类别的count,然后取对数,相加,然后又加上一个类别除以类别之和取对数
                //现在理解了,这就是算先验概率啊
                ICategory cat = kvp.Value;
                score[cat.Name] += System.Math.Log((double)cat.TotalWords / (double)this.CountTotalWordsInCategories());
            }
            //所以这个整个过程就是算P(f1=x1,f2=x2...fn=xn|s=si)=P(f1=x1|s=si)*P(f2=x2|s=si)....*P(fn=xn|s=si)*P(s=si)
            return(score);
        }