static public bool?HasHla(Hla hlaGoal, Dictionary <string, string> row, HlaResolution hlaResolution)
        {
            bool hasNull = false;

            for (int i = 1; i <= 2; ++i)
            {
                string      column            = hlaGoal.ToString().Substring(0, 1) + i.ToString();
                HlaToLength hlaToLengthOrNull = HlaAssignmentParams.GetHlaToLengthValueOrNull(row, column, hlaResolution);
                if (hlaToLengthOrNull == null || hlaToLengthOrNull.HlaNumberToLength >= 9000)
                {
                    hasNull = true;
                    continue;
                }

                if (hlaGoal.ToString() == hlaToLengthOrNull.ToString())
                {
                    return(true);
                }
            }
            if (hasNull)
            {
                return(null);
            }
            else
            {
                return(false);
            }
        }
        public static void BioQuickTestInternal(Quickscore <Hla, int> quickscore, string fileName, string header)
        {
            List <int> patientList = quickscore.EffectList();

            List <QmrJob <Hla, int> > jobList = new List <QmrJob <Hla, int> >();

            foreach (List <Dictionary <string, string> > tableByPeptide in HlaAssignmentParams.QuickScoreOptimalsGroupByPeptide(fileName, header))
            {
                Debug.Assert(tableByPeptide.Count > 0);                 // real assert
                string peptide = tableByPeptide[0]["peptide"];



                List <int> patientsWhoDoNotRespond;
                List <int> patientsWhoRespond;
                QmrAlgorithms.FindPatientsWhoRespondAndWhoDoNot(patientList, tableByPeptide, out patientsWhoRespond, out patientsWhoDoNotRespond);

                QmrJob <Hla, int> aQuickScoreJob = QmrJob <Hla, int> .GetInstance(peptide, patientsWhoRespond, patientsWhoDoNotRespond, quickscore);

                jobList.Add(aQuickScoreJob);
            }


            jobList.Sort(delegate(QmrJob <Hla, int> x, QmrJob <Hla, int> y) { return(x.PresentEffectCollection.Count.CompareTo(y.PresentEffectCollection.Count)); });
            foreach (QmrJob <Hla, int> job in jobList)
            {
                Debug.WriteLine(job);
            }


            foreach (QmrJob <Hla, int> job in jobList)
            {
                //if (job.Name != "RIRTWKSLVK")
                //{
                //    continue;
                //}
                Console.WriteLine(job);

                //job.Quickscore.Probability("B58", job.PresentEffectCollection, job.AbsentEffectCollection);

                Stopwatch stopwatch = new Stopwatch();
                stopwatch.Start();
                Dictionary <Hla, double> posteriorOfEveryCause = job.PosteriorOfEveryCause();
                stopwatch.Stop();

                Console.WriteLine("{0}\t{1}\t{2}\t{3}", job.Name, job.PresentEffectCollection.Count, job.AbsentEffectCollection.Count, stopwatch.Elapsed);

                foreach (KeyValuePair <Hla, double> causeAndPosterior in posteriorOfEveryCause)
                {
                    Debug.Assert(0 <= causeAndPosterior.Value && causeAndPosterior.Value <= 1);
                    Console.WriteLine("{0}\t{1}\t{2}\t{3}\t{4}\t{5}", job.Name, job.PresentEffectCollection.Count, job.AbsentEffectCollection.Count, stopwatch.Elapsed
                                      , causeAndPosterior.Key, causeAndPosterior.Value);
                }
            }
        }
        public static void FindPatientsWhoRespondAndWhoDoNot(IList <int> patientList, List <Dictionary <string, string> > tableByPeptide, out List <int> patientsWhoRespond, out List <int> patientsWhoDoNotRespond)
        {
            Dictionary <int, bool> patientsWhoRespondDictionary = new Dictionary <int, bool>();

            foreach (Dictionary <string, string> row in tableByPeptide)
            {
                int patient = HlaAssignmentParams.GetPatient(row);
                patientsWhoRespondDictionary[patient] = true;
            }

            patientsWhoDoNotRespond = new List <int>();
            foreach (int patient in patientList)
            {
                if (!patientsWhoRespondDictionary.ContainsKey(patient))
                {
                    patientsWhoDoNotRespond.Add(patient);
                }
            }
            patientsWhoRespond = new List <int>(patientsWhoRespondDictionary.Keys);
        }
        static public IEnumerable <Hla> FindAllHla(List <Dictionary <string, string> > expandedTable, HlaResolution hlaResolution, string header)
        {
            Qmrr.HlaFactory hlaFactory = Qmrr.HlaFactory.GetFactory("noConstraint");

            Dictionary <Hla, bool> seenIt = new Dictionary <Hla, bool>();

            foreach (Dictionary <string, string> row in expandedTable)
            {
                foreach (string column in HlaAssignmentParams.CreateHlaColumns(header))
                {
                    HlaToLength hlaToLengthOrNull = HlaAssignmentParams.GetHlaToLengthValueOrNull(row, column, hlaResolution);
                    if (hlaToLengthOrNull == null || hlaToLengthOrNull.HlaNumberToLength >= 9000)
                    {
                        continue;
                    }
                    Hla hla = hlaFactory.GetGroundInstance(hlaToLengthOrNull.ToString());
                    if (!seenIt.ContainsKey(hla))
                    {
                        seenIt.Add(hla, true);
                        yield return(hla);
                    }
                }
            }
        }
        public static void SearchHlaAssignmentsRelaxation(string fileName, string header, string solutionFileName, string solutionHeader, double causePrior, double linkProbability, double leakProbability, int howManyBest, string outputFilename, HlaResolution hlaResolution)
        {
            Debug.Assert(Math.Exp(double.NegativeInfinity) == 0);

            //Create the structure of patients and their HLAs
            Quickscore <Hla, int> quickscore = HlaAssignmentParams.CreateQuickscore(fileName, header, causePrior, linkProbability, leakProbability, hlaResolution);

            // Get the list of patients, Hlas, and patient weights
            List <int>        patientList = quickscore.EffectList();
            IEnumerable <Hla> hlaList     = quickscore.CauseList();
            //The structure file can contain a "weight" column. If it does, weight the patients, otherwise give them all weight 1.0
            Dictionary <int, double> patientWeightTable = HlaAssignmentParams.CreatePatientWeightTable(fileName, header);

            //The cause assignment table is a mapping from
            //    peptide to HLA assignments for that peptide
            Dictionary <string, List <Dictionary <string, string> > > causeAssignmentTable = CreateCauseAssignmentTable(solutionFileName, solutionHeader);

            //We start the report
            using (StreamWriter streamwriterOutputFile = File.CreateText(outputFilename))
            {
                //The report is the same as the input "solution" except that we now list new HLA, a note, and a p(assignment)
                streamwriterOutputFile.WriteLine(SpecialFunctions.CreateTabString(solutionHeader,
                                                                                  "newHLA", "rank", "p(assignment)", "note", "Peptide", "LogLikelihood", "TrueHlas.Count", "TrueHlas", "TrueHlasAndRespondingPatients", "UnexplainedPatients.Count"));

                //Now we go through the model file, one peptide at a time. For each peptide, we know the patientID (did) of
                // every patient who responded. (It also tells the HLAs of the patient, but we already have that info in the structure)

                /*
                 * peptide	did	a1	a2	b1	b2	c1	c2
                 *
                 * ACQGVGGPGHK	10	2	11	38	44	12	16
                 * ACQGVGGPGHK	14	2	24	1517	58	3	7
                 * ACQGVGGPGHK	41	11	33	35	40	6	7
                 * ACQGVGGPGHK	102	2	11	35	44	4	5
                 *
                 * AENLWVTVY	25	24	66	35	39	4	12
                 * AENLWVTVY	36	23	32	8	44	7	7
                 * AENLWVTVY	45	3	31	39	44	5	12
                 * AENLWVTVY	46	2	29	41	52	16	16
                 * AENLWVTVY	59	2	33	7	44	3	15
                 *
                 * [...]
                 */

                foreach (List <Dictionary <string, string> > tableByPeptide in HlaAssignmentParams.QuickScoreOptimalsGroupByPeptide(fileName, header))
                {
                    Debug.Assert(tableByPeptide.Count > 0);                     // real assert
                    string peptide = tableByPeptide[0]["peptide"];


                    //Create lists of patients who responded and assume everyone else didn't.
                    List <int> patientsWhoRespond;
                    List <int> patientsWhoDoNotRespond;
                    FindPatientsWhoRespondAndWhoDoNot(patientList, tableByPeptide, out patientsWhoRespond, out patientsWhoDoNotRespond);

                    //If we get a peptide with no row in the solution file, skip it.
                    if (!causeAssignmentTable.ContainsKey(peptide))
                    {
                        streamwriterOutputFile.WriteLine("{0}\t\t{1}", peptide, "explained by noise");
                        continue;
                    }

                    //We assign every HLA mentioned by the solution file with this peptide to TRUE and all others to FALSE
                    //An assignment of TRUE means that this HLA is a cause of this response.
                    List <Dictionary <string, string> > rowsOfThisPeptide = causeAssignmentTable[peptide];
                    HlaAssignmentWithResponses          hlaAssignmentBase = CreateHlaAssignment(rowsOfThisPeptide, hlaList, hlaResolution, quickscore, patientsWhoRespond);

                    //Find the likelihood of this structure, with these patient responses, and the solution's HLA assignment.
                    double baseLogLikelihood = quickscore.LogLikelihoodOfModelWithCompleteAssignments(patientsWhoRespond, patientsWhoDoNotRespond, hlaAssignmentBase.AsDictionary, patientWeightTable);


                    //Consider each HLA assigned to TRUE (for this peptide) by the solution
                    foreach (Dictionary <string, string> row in rowsOfThisPeptide)
                    {
                        Hla hla = GetHlaFromRow(row, hlaResolution);

                        //If we already really know that this HLA is a cause of this reponse, just report that.
                        if (IsKnown(row))
                        {
                            streamwriterOutputFile.WriteLine("{0}\t{1}\t{2}", row[""], hla, "known");
                            continue;
                        }

                        //Set it to false as a way to see measure the probability that it is true.
                        HlaAssignmentWithResponses hlaAssignmentL0 = CreateHlaAssignment(rowsOfThisPeptide, hlaList, hlaResolution, quickscore, patientsWhoRespond, hla, null);
                        double logL0 = quickscore.LogLikelihoodOfModelWithCompleteAssignments(patientsWhoRespond, patientsWhoDoNotRespond, hlaAssignmentL0.AsDictionary, patientWeightTable);
                        Debug.Assert(hlaAssignmentL0.TrueCount + 1 == hlaAssignmentBase.TrueCount);                         // real assert
                        string noteNote = "";
                        if (logL0 > baseLogLikelihood)
                        {
                            noteNote = string.Format("\tlogL0 > baseLogLikelihood ({0}>{1})", logL0, baseLogLikelihood);
                        }
                        double probability = Math.Exp(baseLogLikelihood - SpecialFunctions.LogSum(baseLogLikelihood, logL0));
                        streamwriterOutputFile.WriteLine(SpecialFunctions.CreateTabString(
                                                             row[""], hla, "1 best", probability, noteNote,
                                                             peptide, baseLogLikelihood, hlaAssignmentBase.TrueCount, hlaAssignmentBase.TrueToString(), hlaAssignmentBase.TrueToListString(), hlaAssignmentBase.UnexplainedPatients.Count));
                        streamwriterOutputFile.WriteLine(SpecialFunctions.CreateTabString(
                                                             row[""], hla, "remove 1 best", "", noteNote,
                                                             peptide, logL0, hlaAssignmentL0.TrueCount, hlaAssignmentL0.TrueToString(), hlaAssignmentL0.TrueToListString(), hlaAssignmentL0.UnexplainedPatients.Count));

                        //Also, while we're in the world were it is false, let's measure how well each of the currently-set-to-false HLAs would do instead.
                        //!!!should this be one dictionary to a new class instead of three dictionaries?
                        List <KeyValuePair <Hla, double> >           listOfhla1AndProbability1 = new List <KeyValuePair <Hla, double> >();
                        Dictionary <Hla, double>                     loglikelihoodCollection   = new Dictionary <Hla, double>();
                        Dictionary <Hla, HlaAssignmentWithResponses> hla1ToHlaAssignment       = new Dictionary <Hla, HlaAssignmentWithResponses>();
                        foreach (Hla hla1 in hlaList)
                        {
                            if (hla1 == hla || hlaAssignmentBase.AsDictionary[hla1])
                            {
                                continue;
                            }

                            HlaAssignmentWithResponses hlaAssignmentL1 = CreateHlaAssignment(rowsOfThisPeptide, hlaList, hlaResolution, quickscore, patientsWhoRespond, hla, hla1);
                            if (hlaAssignmentL1.TrueCount == hlaAssignmentBase.TrueCount)
                            {
                                double logL1 = quickscore.LogLikelihoodOfModelWithCompleteAssignments(patientsWhoRespond, patientsWhoDoNotRespond, hlaAssignmentL1.AsDictionary, patientWeightTable);

                                double probability1 = Math.Exp(logL1 - SpecialFunctions.LogSum(logL1, logL0));
                                loglikelihoodCollection[hla1] = logL1;
                                hla1ToHlaAssignment.Add(hla1, hlaAssignmentL1);

                                listOfhla1AndProbability1.Add(new KeyValuePair <Hla, double>(hla1, probability1));
                            }
                        }

                        //Report on the best of these
                        listOfhla1AndProbability1.Sort(delegate(KeyValuePair <Hla, double> x, KeyValuePair <Hla, double> y) { return(y.Value.CompareTo(x.Value)); });
                        for (int i = 0; i < howManyBest - 1; ++i)
                        {
                            Hla hla1 = listOfhla1AndProbability1[i].Key;
                            streamwriterOutputFile.WriteLine(SpecialFunctions.CreateTabString(
                                                                 row[""], hla1, string.Format("{0} best", i + 2), listOfhla1AndProbability1[i].Value,
                                                                 "", peptide, loglikelihoodCollection[hla1], hla1ToHlaAssignment[hla1].TrueCount, hla1ToHlaAssignment[hla1].TrueToString(), hla1ToHlaAssignment[hla1].TrueToListString(), hla1ToHlaAssignment[hla1].UnexplainedPatients.Count));
                        }
                    }
                }
            }
        }
Exemplo n.º 6
0
        public static HlaAssignmentParams GetInstance(string nameForNumbers, string prefix, int limit, bool doPlus, bool doOutput)
        {
            HlaAssignmentParams aHlaAssignmentParams = new HlaAssignmentParams();

            aHlaAssignmentParams.Limit    = limit;
            aHlaAssignmentParams.DoPlus   = doPlus;
            aHlaAssignmentParams.FileName = string.Format(@"{0}-model.txt", prefix);
            //aHlaAssignmentParams.Header = @"peptide	did	a1	a2	b1	b2	c1	c2";
            aHlaAssignmentParams.OutputFileOrNull = doOutput ? string.Format(@"exhaustivePlus{0}-abinitio.{1}.{2}.new.txt", prefix, limit, nameForNumbers) : null;             //!!!const

            //string solutionFileName = string.Format(@"{0}-solution-abinitio-leak0.003.txt", prefix);
            //string solutionHeader = @"peptide	HLA	p(assignment)	isKnown	knownHLAs";



            if (nameForNumbers == "")
            {
                if (prefix == "HIVOptimals")
                {
                    aHlaAssignmentParams.CausePrior      = 0.011498;
                    aHlaAssignmentParams.LinkProbability = 0.48795;
                    aHlaAssignmentParams.LeakProbability = 0.051818;
                }
                else
                {
                    SpecialFunctions.CheckCondition(prefix == "EBVOptimals");
                    aHlaAssignmentParams.CausePrior      = 0.0068892;
                    aHlaAssignmentParams.LinkProbability = 0.4597;
                    aHlaAssignmentParams.LeakProbability = 0.042766;
                }
            }
            //else if (nameForNumbers == "1in300")
            //{

            //    if (prefix == "HIVOptimals")
            //    {
            //        linkProbability = 0.30816;
            //        causePrior = 0.040854;
            //        leakProbability = 0.0033333;
            //    }
            //    else
            //    {

            //        CheckCondition(prefix == "EBVOptimals");
            //        linkProbability = 0.30056;
            //        causePrior = 0.028322;
            //        leakProbability = 0.0033333;
            //    }
            //}
            else if (nameForNumbers == "leak0")
            {
                if (prefix == "HIVOptimals")
                {
                    aHlaAssignmentParams.CausePrior      = 0.041551;
                    aHlaAssignmentParams.LinkProbability = 0.33478;
                    aHlaAssignmentParams.LeakProbability = 1.0 / 300.0;
                }
                else
                {
                    SpecialFunctions.CheckCondition(prefix == "EBVOptimals");
                    aHlaAssignmentParams.CausePrior      = 0.028628;
                    aHlaAssignmentParams.LinkProbability = 0.29874;
                    aHlaAssignmentParams.LeakProbability = 1.0 / 300.0;
                }
            }
            else
            {
                aHlaAssignmentParams.CausePrior      = double.NaN;
                aHlaAssignmentParams.LinkProbability = double.NaN;
                aHlaAssignmentParams.LeakProbability = double.NaN;
            }

            aHlaAssignmentParams.HlaResolution = HlaResolution.ABMixed;

            return(aHlaAssignmentParams);
        }