Exemplo n.º 1
0
 /// <summary>
 /// Returns a 1-D tensor of size \(\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor\)
 /// with values from the interval [start, end) taken with common difference
 /// step beginning from start.
 ///
 /// Note that non-integer step is subject to floating point rounding errors when
 /// comparing against end; to avoid inconsistency, we advise adding a small epsilon to end
 /// in such cases.
 ///
 /// \[\text{out}_{{i+1}} = \text{out}_{i} + \text{step}
 ///
 /// \]
 /// </summary>
 /// <param name="end">
 /// the ending value for the set of points
 /// </param>
 /// <param name="@out">
 /// the output tensor
 /// </param>
 /// <param name="dtype">
 /// the desired data type of returned tensor.
 /// Default: if None, uses a global default (see torch.set_default_tensor_type()). If dtype is not given, infer the data type from the other input
 /// arguments. If any of start, end, or stop are floating-point, the
 /// dtype is inferred to be the default dtype, see
 /// get_default_dtype(). Otherwise, the dtype is inferred to
 /// be torch.int64.
 /// </param>
 /// <param name="layout">
 /// the desired layout of returned Tensor.
 /// Default: torch.strided.
 /// </param>
 /// <param name="device">
 /// the desired device of returned tensor.
 /// Default: if None, uses the current device for the default tensor type
 /// (see torch.set_default_tensor_type()). device will be the CPU
 /// for CPU tensor types and the current CUDA device for CUDA tensor types.
 /// </param>
 /// <param name="requires_grad">
 /// If autograd should record operations on the
 /// returned tensor. Default: False.
 /// </param>
 public static Tensor arange(int end, Tensor @out = null, Dtype dtype = null, Layout layout = null, Device device = null, bool?requires_grad = false)
 => torch.arange(0, end, 1, @out: @out, dtype: torch.int64, layout: layout, device: device, requires_grad: requires_grad);
Exemplo n.º 2
0
 /// <summary>
 /// Returns a 1-D tensor of size \(\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor\)
 /// with values from the interval [start, end) taken with common difference
 /// step beginning from start.
 ///
 /// Note that non-integer step is subject to floating point rounding errors when
 /// comparing against end; to avoid inconsistency, we advise adding a small epsilon to end
 /// in such cases.
 ///
 /// \[\text{out}_{{i+1}} = \text{out}_{i} + \text{step}
 ///
 /// \]
 /// </summary>
 /// <param name="start">
 /// the starting value for the set of points. Default: 0.
 /// </param>
 /// <param name="end">
 /// the ending value for the set of points
 /// </param>
 /// <param name="step">
 /// the gap between each pair of adjacent points. Default: 1.
 /// </param>
 /// <param name="@out">
 /// the output tensor
 /// </param>
 /// <param name="dtype">
 /// the desired data type of returned tensor.
 /// Default: if None, uses a global default (see torch.set_default_tensor_type()). If dtype is not given, infer the data type from the other input
 /// arguments. If any of start, end, or stop are floating-point, the
 /// dtype is inferred to be the default dtype, see
 /// get_default_dtype(). Otherwise, the dtype is inferred to
 /// be torch.int64.
 /// </param>
 /// <param name="layout">
 /// the desired layout of returned Tensor.
 /// Default: torch.strided.
 /// </param>
 /// <param name="device">
 /// the desired device of returned tensor.
 /// Default: if None, uses the current device for the default tensor type
 /// (see torch.set_default_tensor_type()). device will be the CPU
 /// for CPU tensor types and the current CUDA device for CUDA tensor types.
 /// </param>
 /// <param name="requires_grad">
 /// If autograd should record operations on the
 /// returned tensor. Default: False.
 /// </param>
 public static Tensor arange(int start, int end, int step = 1, Tensor @out = null, Dtype dtype = null, Layout layout = null, Device device = null, bool?requires_grad = false)
 => PyTorch.Instance.arange(start, end, step: step, @out: @out, dtype: torch.int64, layout: layout, device: device, requires_grad: requires_grad);