Exemplo n.º 1
0
 public PooledObject <CudaBlas> BlasForTensor(Tensor tensor)
 {
     return(BlasForDevice(CudaHelpers.GetDeviceId(tensor)));
 }
Exemplo n.º 2
0
 public CudaContext CudaContextForTensor(Tensor tensor)
 {
     return(CudaContextForDevice(CudaHelpers.GetDeviceId(tensor)));
 }
Exemplo n.º 3
0
        //TODO this is not actually used at the moment. It probably should be.
        // excludeDim may be -1 to not exclude any dimension
        /// <summary>
        /// Collapses the dims.
        /// </summary>
        /// <param name="tensor">The tensor.</param>
        /// <param name="excludeDim">The exclude dim.</param>
        /// <param name="info">The information.</param>
        /// <returns>System.Int32.</returns>
        /// <exception cref="ArgumentException">excludeDim must equal -1 if all dims are of size 1 - excludeDim</exception>
        public static int CollapseDims(Tensor tensor, int excludeDim, out TensorInfo info)
        {
            info.buffer = CudaHelpers.GetBufferStart(tensor);
            var firstNonOneDim = GetInnermostNon1Dim(tensor.Shape, excludeDim);

            // If all dims are size 1 (ie. tensor contains 1 element)
            if (firstNonOneDim == -1)
            {
                if (excludeDim != -1)
                {
                    throw new ArgumentException("excludeDim must equal -1 if all dims are of size 1", "excludeDim");
                }

                info.sizes   = new long[] { 1 };
                info.strides = new long[] { 1 };
                return(0);
            }


            // Count the number of successive dimensions that can be collapsed, from
            // innermost to outermost.
            int numCollapsed = 0;

            // Skip the leading size 1 dims
            numCollapsed += tensor.DimensionCount - 1 - firstNonOneDim;

            // We perform one pass through to determine how many dimensions we
            // can collapse, before calculating the actual size of the collapsed
            // dimensions.
            // size/strideInner are the size/strides of the previous inner
            // non-collapsible dim we encounter.
            var sizeInner   = tensor.Shape[firstNonOneDim];
            var strideInner = tensor.Strides[firstNonOneDim];

            for (int i = firstNonOneDim - 1; i >= 0; --i)
            {
                var sizeOuter   = tensor.Shape[i];
                var strideOuter = tensor.Strides[i];

                // Don't collapse this dimension if we want to exclude it from
                // collapsing.
                // Since this code is attempting to collapse a subsequent
                // dimension (i) with the preceding dimension (i + 1), we can only
                // perform collapsing if the preceding dimension can be collapsed
                // (i.e., not excludeDim)
                if ((excludeDim != i) && (excludeDim != i + 1))
                {
                    // The next outermost dimension can be skipped if size 1
                    if (sizeOuter == 1)
                    {
                        ++numCollapsed;
                        continue;
                    }

                    // If the next outermost dimension is contiguous with the
                    // previous non-collapsed one, collapse it
                    if (strideOuter == strideInner * sizeInner)
                    {
                        ++numCollapsed;

                        // This is the run of collapsed dimensions' size
                        sizeInner = sizeInner * sizeOuter;
                        continue;
                    }
                }

                // Otherwise, this new outer dimension at `i` cannot be collapsed
                // because it is excluded from collapsing, or it is not contiguous
                // with the previous inner dimension.
                sizeInner   = sizeOuter;
                strideInner = strideOuter;
            }

            // This will be our new size/stride and dimension.
            var newSizes   = new long[TSCudaContext.MaxDims];
            var newStrides = new long[TSCudaContext.MaxDims];

            int newDims = tensor.DimensionCount - numCollapsed;

            // We return the index of the excluded dimension that is excluded
            // from being collapsed here.
            int returnDim = -1;

            // We perform a second pass through the dimensions to actually
            // calculate the size of the collapsed dimensions.
            int collapsedIndex = tensor.DimensionCount - numCollapsed - 1;

            newSizes[collapsedIndex]   = tensor.Shape[firstNonOneDim];
            newStrides[collapsedIndex] = tensor.Strides[firstNonOneDim];

            if (firstNonOneDim == excludeDim)
            {
                returnDim = collapsedIndex;
            }

            for (int i = firstNonOneDim - 1; i >= 0; --i)
            {
                var sizeOuter   = tensor.Shape[i];
                var strideOuter = tensor.Strides[i];

                if ((excludeDim != i) && (excludeDim != i + 1))
                {
                    if (sizeOuter == 1)
                    {
                        // skip
                        continue;
                    }

                    if (strideOuter == newSizes[collapsedIndex] * newStrides[collapsedIndex])
                    {
                        // collapse
                        newSizes[collapsedIndex] *= sizeOuter;
                        continue;
                    }
                }

                // Otherwise, strides don't match, or dim `i` is excluded from
                // collapsing.
                --collapsedIndex;
                //assert(collapsedIndex >= 0);
                //assert(collapsedIndex < newDims);
                newSizes[collapsedIndex]   = sizeOuter;
                newStrides[collapsedIndex] = strideOuter;

                if (excludeDim == i)
                {
                    returnDim = collapsedIndex;
                }
            }

            info.sizes   = newSizes.Take(newDims).ToArray();
            info.strides = newStrides.Take(newDims).ToArray();
            return(returnDim);
        }
Exemplo n.º 4
0
        public Tensor Addmm(Tensor result, float beta, Tensor src, float alpha, Tensor m1, Tensor m2)
        {
            try
            {
                TSCudaContext context = CudaHelpers.TSContextForTensor(src);
                if (src.ElementType != m1.ElementType || src.ElementType != m2.ElementType || (result != null && result.ElementType != src.ElementType))
                {
                    throw new InvalidOperationException("All tensors must have the same element type");
                }

                if (result != null && !(result.Storage is CudaStorage))
                {
                    throw new ArgumentException("result must be a CUDA tensor", "result");
                }

                if (!(m1.Storage is CudaStorage))
                {
                    throw new ArgumentException("m1 must be a CUDA tensor", "m1");
                }

                if (!(m2.Storage is CudaStorage))
                {
                    throw new ArgumentException("m2 must be a CUDA tensor", "m2");
                }

                if (src.DimensionCount != 2)
                {
                    throw new ArgumentException("src must be a matrix", "src");
                }

                if (m1.DimensionCount != 2)
                {
                    throw new ArgumentException("m1 must be a matrix", "m1");
                }

                if (m2.DimensionCount != 2)
                {
                    throw new ArgumentException("m2 must be a matrix", "m2");
                }

                if (src.Sizes[0] != m1.Sizes[0] || src.Sizes[1] != m2.Sizes[1] || m1.Sizes[1] != m2.Sizes[0])
                {
                    throw new InvalidOperationException($"Size mismatch, srcSize0 = {src.Sizes[0]}, m1Size0 = {m1.Sizes[0]}, srcSize1 = {src.Sizes[1]}, m2Size1 = {m2.Sizes[1]}, m1Size1 = '{m1.Sizes[1]}', m2Size0 = '{m2.Sizes[0]}'");
                }

                Tensor writeTarget = TensorResultBuilder.GetWriteTarget(result, src, true, src.Sizes);

                if (writeTarget != src)
                {
                    Ops.Copy(writeTarget, src);
                }

                CudaMatrixMulMM.Gemm(context, alpha, m1, m2, beta, writeTarget);


                return(writeTarget);
            }
            catch (Exception err)
            {
                Logger.WriteLine($"Exception in Addmm: '{err.Message}'");
                Logger.WriteLine($"Call stack: '{err.StackTrace}'");

                throw err;
            }
        }
Exemplo n.º 5
0
        private static CudaDeviceVariable <float> GetDeviceVar(Tensor tensor)
        {
            var ptr = CudaHelpers.GetBufferStart(tensor);

            return(new CudaDeviceVariable <float>(ptr, false, 0));// set size to 0 because we never end up using it
        }
Exemplo n.º 6
0
        /// <summary>
        /// DNNs for tensor.
        /// </summary>
        /// <param name="tensor">The tensor.</param>
        /// <returns>PooledObject&lt;ManagedCuda.CudaDNN.CudaDNNContext&gt;.</returns>
        public PooledObject <ManagedCuda.CudaDNN.CudaDNNContext> DNNForTensor(NDArray tensor)
        {
            var deviceId = CudaHelpers.GetDeviceId(tensor);

            return(devices[deviceId].DnnHandles.Get());
        }