Exemplo n.º 1
0
        public void RejectPatches()
        {
            // arrange - create object model
            ObjectModelStub objectModel = new ObjectModelStub();

            // arrange - create scanning window generator with dummy windows
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            swg.ScanningWindows = new IBoundingBox[]
            {
                new BoundingBox(new PointF(10, 10), new SizeF(5, 5)),
                new BoundingBox(new PointF(10, 10), new SizeF(5, 5)),
                new BoundingBox(new PointF(10, 10), new SizeF(5, 5)),
            };

            // arrange - create nn classifier
            NnClassifier classifier = new NnClassifier(swg, objectModel, 0.75f, 0.6f);

            classifier.PostInstantiation();
            classifier.Initialize(new Image <Gray, byte>(new Size(0, 0)), new BoundingBox(new PointF(), new SizeF()));

            // arrange - hard code relative similarities of patches in scanning windows
            // 1. relative similarity of the patch in the first scanning window
            // is below the threshold -> scanning window is rejected
            // 2. relative similarity of the patch in the second scanning window
            // is the same as the threshold -> scanning window is rejected
            // 3. relative similarity of the patch in the third scanning window
            // is above the threshold -> scanning window is accepted
            objectModel.RelativeSimilarities = new List <float>()
            {
                0.1f, 0.6f, 0.9f
            };
            objectModel.PnnSimilarities = new List <float>()
            {
                0, 0.9f, 0.9f
            };
            objectModel.NnnSimilarities = new List <float>()
            {
                1, 0.9f, 0
            };

            // define expected accepted scanning windows
            List <int> expected = new List <int>()
            {
                2
            };

            // get actual accepted scanning windows
            List <int> actual = classifier.AcceptedWindows(new Image <Gray, byte>(new Size(1, 1)), new List <int>()
            {
                0, 1, 2
            });

            // assert
            CollectionAssert.AreEqual(expected, actual);
        }
Exemplo n.º 2
0
        public void CalculateIntegerBinaryCodeForWindow_1Window()
        {
            // arrange - load frame
            Image <Gray, byte> frame = new Image <Gray, byte>(new Size(2, 2));

            frame[0, 0] = new Gray(1);
            frame[0, 1] = new Gray(2);
            frame[1, 0] = new Gray(3);
            frame[1, 1] = new Gray(4);

            // arrange - create scanning window generator with 1 scanning window
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            IBoundingBox bb = new BoundingBox(new PointF(0.5f, 0.5f), new SizeF(2, 2));

            bb.ScanningWindow = bb.CreateScanningWindow();

            swg.ScanningWindows = new IBoundingBox[]
            {
                bb,
            };

            // arrange - create pixel comparison scheduler with for 1 base classifier with 4 comparisons
            PixelComparisonSchedulerStub pcs = new PixelComparisonSchedulerStub();
            PixelComparisonGroupF        pcg = new PixelComparisonGroupF();

            pcg.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0), new PointF(1, 0)),
                new PixelComparisonF(new PointF(0, 1), new PointF(1, 1)),
                new PixelComparisonF(new PointF(0, 1), new PointF(0, 0)),
                new PixelComparisonF(new PointF(1, 1), new PointF(1, 0))
            };
            pcs.ScheduledPixelComparisons = new PixelComparisonGroupF[]
            {
                pcg
            };

            // arrange - create base classifier
            BaseClassifier classifier = new BaseClassifier(swg, 0, pcs);

            classifier.PostInstantiation();
            classifier.Initialize();

            // define expected
            int expected = 3;

            // get actual
            classifier.SetCurrentFrame(frame);
            int actual = classifier.CalculateIntegerBinaryCodeForWindow(0);

            // assert
            Assert.AreEqual(expected, actual);
        }
Exemplo n.º 3
0
        public void StretchComparisonsOnWindow_LessSimple()
        {
            // arrange - create scanning window generator with 2 scanning windows
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            // first window is not important
            IBoundingBox bb1 = new BoundingBox(new PointF(), new SizeF());

            // second window is important
            IBoundingBox bb2 = new BoundingBox(new PointF(1.5f, 3.0f), new SizeF(2, 3));

            bb2.ScanningWindow  = bb2.CreateScanningWindow();
            swg.ScanningWindows = new IBoundingBox[]
            {
                bb1,
                bb2
            };

            // arrange - create pixel comparison scheduler with for 1 base classifier with 2 comparisons
            PixelComparisonSchedulerStub pcs = new PixelComparisonSchedulerStub();
            PixelComparisonGroupF        pcg = new PixelComparisonGroupF();

            pcg.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0), new PointF(0, 0.5f)),
                new PixelComparisonF(new PointF(1, 0.5f), new PointF(1, 1))
            };
            pcs.ScheduledPixelComparisons = new PixelComparisonGroupF[]
            {
                pcg
            };

            // arrange - create base classifier
            BaseClassifier classifier = new BaseClassifier(swg, 0, pcs);

            // define expected
            Point[][] expected = new Point[2][];
            expected[0] = new Point[] { new Point(1, 2), new Point(1, 3) };
            expected[1] = new Point[] { new Point(2, 3), new Point(2, 4) };

            // get actual
            Point[][] actual = classifier.StretchComparisonsOnWindow(1);

            // assert
            Assert.AreEqual(2, actual.Length);
            Assert.AreEqual(2, actual[0].Length);
            Assert.AreEqual(2, actual[1].Length);
            Assert.AreEqual(expected[0][0], actual[0][0]);
            Assert.AreEqual(expected[0][1], actual[0][1]);
            Assert.AreEqual(expected[1][0], actual[1][0]);
            Assert.AreEqual(expected[1][1], actual[1][1]);
        }
Exemplo n.º 4
0
        public void CalculateBinaryCodeForWindow_1Window()
        {
            // arrange - load frame
            Image <Gray, byte> frame = new Image <Gray, byte>(Path.Combine(_resourceDir, "patch_12x10.jpg"));

            // arrange - create scanning window generator with 1 scanning window
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            IBoundingBox bb = new BoundingBox(new PointF(6.5f, 4.0f), new SizeF(1, 2));

            bb.ScanningWindow = bb.CreateScanningWindow();

            swg.ScanningWindows = new IBoundingBox[]
            {
                bb,
            };

            // arrange - create pixel comparison scheduler with for 1 base classifier with 4 comparisons
            PixelComparisonSchedulerStub pcs = new PixelComparisonSchedulerStub();
            PixelComparisonGroupF        pcg = new PixelComparisonGroupF();

            pcg.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0), new PointF(1, 0)),
                new PixelComparisonF(new PointF(0, 1), new PointF(1, 1)),
                new PixelComparisonF(new PointF(0, 0), new PointF(0, 1)),
                new PixelComparisonF(new PointF(1, 0), new PointF(1, 1))
            };
            pcs.ScheduledPixelComparisons = new PixelComparisonGroupF[]
            {
                pcg
            };

            // arrange - create base classifier
            BaseClassifier classifier = new BaseClassifier(swg, 0, pcs);

            classifier.PostInstantiation();
            classifier.Initialize();

            // define expected
            bool[] expected = new bool[] { false, false, true, true };

            // get actual
            classifier.SetCurrentFrame(frame);
            bool[] actual = classifier.CalculateBinaryCodeForWindow(0).Data;

            // assert
            CollectionAssert.AreEqual(expected, actual);
        }
Exemplo n.º 5
0
        public void RejectPatches()
        {
            // arrange - create object model
            IObjectModel objectModel = new ObjectModel(new Size(15, 15));

            objectModel.PostInstantiation();
            // -> create 2 positive and 2 negative patches
            Image <Gray, byte> helpImage = new Image <Gray, byte>(Path.Combine(_resourceDir, "violeta_1.jpg"));
            Image <Gray, byte> posPatch1 = helpImage.GetPatch(new PointF(168, 178), new Size(80, 40)).Resize(objectModel.PatchSize.Width, objectModel.PatchSize.Height, INTER.CV_INTER_LINEAR);
            Image <Gray, byte> posPatch2 = helpImage.GetPatch(new PointF(169, 179), new Size(81, 41)).Resize(objectModel.PatchSize.Width, objectModel.PatchSize.Height, INTER.CV_INTER_LINEAR);
            Image <Gray, byte> negPatch1 = helpImage.GetPatch(new PointF(300, 200), new Size(50, 50)).Resize(objectModel.PatchSize.Width, objectModel.PatchSize.Height, INTER.CV_INTER_LINEAR);
            Image <Gray, byte> negPatch2 = helpImage.GetPatch(new PointF(200, 300), new Size(50, 50)).Resize(objectModel.PatchSize.Width, objectModel.PatchSize.Height, INTER.CV_INTER_LINEAR);

            // -> add patches to the object model
            objectModel.AddPositivePatch(posPatch1);
            objectModel.AddPositivePatch(posPatch2);
            objectModel.AddNegativePatch(negPatch1);
            objectModel.AddNegativePatch(negPatch2);

            // arrange - create scanning window generator with stub windows
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            swg.ScanningWindows = new IBoundingBox[]
            {
                new BoundingBox(new PointF(167, 177), new SizeF(79, 39)),
                new BoundingBox(new PointF(300, 300), new SizeF(80, 40))
            };

            // arrange - create classifier
            NnClassifier classifier = new NnClassifier(swg, objectModel, 0.75f, 0.6f);

            classifier.PostInstantiation();
            classifier.Initialize(new Image <Gray, byte>(new Size(0, 0)), new BoundingBox(new PointF(), new SizeF()));

            // define expected accepted patches
            List <int> expected = new List <int>()
            {
                0
            };

            // get actual accepted patches
            List <int> actual = classifier.AcceptedWindows(helpImage, new List <int>()
            {
                0, 1
            });

            // assert
            CollectionAssert.AreEqual(expected, actual);
        }
Exemplo n.º 6
0
        public void StretchComparisonsOnWindow_Simple()
        {
            // arrange - create scanning window generator with 1 scanning window
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();
            IBoundingBox bb = new BoundingBox(new PointF(1.5f, 1.5f), new SizeF(2, 2));

            bb.ScanningWindow   = bb.CreateScanningWindow();
            swg.ScanningWindows = new IBoundingBox[]
            {
                bb
            };

            // arrange - create pixel comparison scheduler with for 1 base classifier with 2 comparisons
            PixelComparisonSchedulerStub pcs = new PixelComparisonSchedulerStub();
            PixelComparisonGroupF        pcg = new PixelComparisonGroupF();

            pcg.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0), new PointF(1, 0)),
                new PixelComparisonF(new PointF(0, 0), new PointF(0, 1))
            };
            pcs.ScheduledPixelComparisons = new PixelComparisonGroupF[]
            {
                pcg
            };

            // arrange - create base classifier
            BaseClassifier classifier = new BaseClassifier(swg, 0, pcs);

            // define expected
            Point[][] expected = new Point[2][];
            expected[0] = new Point[] { new Point(1, 1), new Point(2, 1) };
            expected[1] = new Point[] { new Point(1, 1), new Point(1, 2) };

            // get actual
            Point[][] actual = classifier.StretchComparisonsOnWindow(0);

            // assert
            Assert.AreEqual(2, actual.Length);
            Assert.AreEqual(2, actual[0].Length);
            Assert.AreEqual(2, actual[1].Length);
            Assert.AreEqual(expected[0][0], actual[0][0]);
            Assert.AreEqual(expected[0][1], actual[0][1]);
            Assert.AreEqual(expected[1][0], actual[1][0]);
            Assert.AreEqual(expected[1][1], actual[1][1]);
        }
Exemplo n.º 7
0
        public void RejectPatches_FrameRoiIsNotSetAfterProcessing()
        {
            // arrange - create object model
            IObjectModel objectModel = new ObjectModel(new Size(15, 15));

            objectModel.PostInstantiation();
            // -> create 1 patch
            Image <Gray, byte> helpImage = new Image <Gray, byte>(Path.Combine(_resourceDir, "violeta_1.jpg"));
            Image <Gray, byte> patch     = helpImage.GetPatch(new PointF(168, 178), new Size(80, 40)).Resize(objectModel.PatchSize.Width, objectModel.PatchSize.Height, INTER.CV_INTER_LINEAR);

            // -> add patch to the object model
            objectModel.AddPositivePatch(patch);

            // arrange - create scanning window generator with stub windows
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            swg.ScanningWindows = new IBoundingBox[]
            {
                new BoundingBox(new PointF(167, 177), new SizeF(79, 39))
            };

            // arrange - create classifier
            NnClassifier classifier = new NnClassifier(swg, objectModel, 0.75f, 0.6f);

            classifier.PostInstantiation();
            classifier.Initialize(new Image <Gray, byte>(new Size(0, 0)), new BoundingBox(new PointF(), new SizeF()));

            // define expected frame ROI after processing
            Rectangle expected = new Rectangle(new Point(), helpImage.Size);

            // get actual frame ROI after processing
            classifier.AcceptedWindows(helpImage, new List <int>()
            {
                0
            });
            Rectangle actual = helpImage.ROI;

            // assert
            Assert.AreEqual(expected, actual);
            Assert.IsTrue(!helpImage.IsROISet);  // just in case
        }
Exemplo n.º 8
0
        public void StretchComparisonsOnWindows_2Windows()
        {
            // arrange - create scanning window generator with 2 scanning windows
            ScanningWindowGeneratorStub swg = new ScanningWindowGeneratorStub();

            IBoundingBox bb1 = new BoundingBox(new PointF(1.5f, 1.5f), new SizeF(2, 2));

            bb1.ScanningWindow = bb1.CreateScanningWindow();

            IBoundingBox bb2 = new BoundingBox(new PointF(1.5f, 3.0f), new SizeF(2, 3));

            bb2.ScanningWindow  = bb2.CreateScanningWindow();
            swg.ScanningWindows = new IBoundingBox[]
            {
                bb1,
                bb2
            };

            // arrange - create pixel comparison scheduler with for 1 base classifier with 2 comparisons
            PixelComparisonSchedulerStub pcs = new PixelComparisonSchedulerStub();
            PixelComparisonGroupF        pcg = new PixelComparisonGroupF();

            pcg.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0), new PointF(1, 0)),
                new PixelComparisonF(new PointF(0, 0), new PointF(0, 1))
            };
            pcs.ScheduledPixelComparisons = new PixelComparisonGroupF[]
            {
                pcg
            };

            // arrange - create base classifier
            BaseClassifier classifier = new BaseClassifier(swg, 0, pcs);

            // define expected for 1st window
            Point[][] expected1 = new Point[2][];
            expected1[0] = new Point[] { new Point(1, 1), new Point(2, 1) };
            expected1[1] = new Point[] { new Point(1, 1), new Point(1, 2) };

            // define expected for 2nd window
            Point[][] expected2 = new Point[2][];
            expected2[0] = new Point[] { new Point(1, 2), new Point(2, 2) };
            expected2[1] = new Point[] { new Point(1, 2), new Point(1, 4) };

            // get actual
            classifier.Initialize();
            Point[][][] AllComparisons = classifier.ComparisonsForWindow;
            Point[][]   actual1        = AllComparisons[0];
            Point[][]   actual2        = AllComparisons[1];

            // assert for 1st window
            Assert.AreEqual(2, actual1.Length);
            Assert.AreEqual(2, actual1[0].Length);
            Assert.AreEqual(2, actual1[1].Length);
            Assert.AreEqual(expected1[0][0], actual1[0][0]);
            Assert.AreEqual(expected1[0][1], actual1[0][1]);
            Assert.AreEqual(expected1[1][0], actual1[1][0]);
            Assert.AreEqual(expected1[1][1], actual1[1][1]);

            // assert for 2nd window
            Assert.AreEqual(2, actual2.Length);
            Assert.AreEqual(2, actual2[0].Length);
            Assert.AreEqual(2, actual2[1].Length);
            Assert.AreEqual(expected2[0][0], actual2[0][0]);
            Assert.AreEqual(expected2[0][1], actual2[0][1]);
            Assert.AreEqual(expected2[1][0], actual2[1][0]);
            Assert.AreEqual(expected2[1][1], actual2[1][1]);
        }
Exemplo n.º 9
0
        public void GetPosteriors_InitializationAndOneMethodCall()
        {
            // arrange - generate pixel comparisons
            PixelComparisonGroupF pcg1 = new PixelComparisonGroupF();

            pcg1.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0.5f), new PointF(0.5f, 0.5f)),
                new PixelComparisonF(new PointF(0.5f, 0), new PointF(0.5f, 0.5f)),
                new PixelComparisonF(new PointF(1, 0.5f), new PointF(0.5f, 0.5f)),
                new PixelComparisonF(new PointF(0.5f, 1), new PointF(0.5f, 0.5f))
            };
            PixelComparisonGroupF pcg2 = new PixelComparisonGroupF();

            pcg2.Value = new PixelComparisonF[]
            {
                new PixelComparisonF(new PointF(0, 0.5f), new PointF(0.5f, 0.5f)),
                new PixelComparisonF(new PointF(0.5f, 0), new PointF(0.5f, 0.5f)),
                new PixelComparisonF(new PointF(1, 0.5f), new PointF(0.5f, 0.5f)),
                new PixelComparisonF(new PointF(0.5f, 1), new PointF(0.5f, 0.5f))
            };
            IPixelComparisonScheduler pxs = new PixelComparisonSchedulerStub(
                new PixelComparisonGroupF[] {
                pcg1,
                pcg2
            }
                );

            // arrange - instantiate ensamble classifier
            ScanningWindowGeneratorStub swgEnsemble = new ScanningWindowGeneratorStub();
            IBoundingBox positiveScanningWindow     = new BoundingBox(new PointF(480, 364), new SizeF(277, 217));

            swgEnsemble.ScanningWindows = new IBoundingBox[]
            {
                new BoundingBox(new PointF(163, 132), new SizeF(288, 220)),
                new BoundingBox(new PointF(478, 127), new SizeF(300, 199)),
                new BoundingBox(new PointF(150, 355), new SizeF(290, 214)),
                positiveScanningWindow,
            };
            foreach (IBoundingBox bb in swgEnsemble.ScanningWindows)
            {
                bb.ScanningWindow = bb.CreateScanningWindow();
            }
            EnsembleClassifier classifier = new EnsembleClassifier(swgEnsemble, pxs, 1.5);

            classifier.PostInstantiation();

            // arrange - define initialization frame and bb
            Image <Gray, byte> initFrame = new Image <Gray, byte>(Path.Combine(_resourceDir, "LP_up_left.jpg"));
            IBoundingBox       initBb    = new BoundingBox(new PointF(170, 150), new SizeF(269, 189));

            // arrange - initialize ensemble classifier
            classifier.Initialize(initFrame, initBb);

            // arrange - generate positive and negative patches
            // -> positive patches
            List <Image <Gray, byte> > positivePatches = new List <Image <Gray, byte> >();
            int positiveCount = 100;

            for (int i = 0; i < positiveCount; i++)
            {
                Image <Gray, byte> patch = Service.GenerateSimilarPatch(initFrame, initBb, 0, 0, 0);
                CvInvoke.cvSmooth(patch, patch, SMOOTH_TYPE.CV_GAUSSIAN, 0, 0, 1.5, 1.5);
                positivePatches.Add(patch);
            }

            // -> negative patches
            IScanningWindowGenerator swg                     = new ScanningWindowGenerator(1.5f, 0.7f, 0.7f, 30);
            List <IBoundingBox>      scanningWindows         = swg.Generate(initFrame.Size, initBb).ToList();
            List <IBoundingBox>      sortedScanningWindows   = Service.SortScanningWindowsByOverlap(scanningWindows, initBb);
            List <IBoundingBox>      negativeScanningWindows = Service.GetScanningWindowsWithOverlapLessThan(0.2f, initBb, sortedScanningWindows);

            List <Image <Gray, byte> > negativePatches = new List <Image <Gray, byte> >();
            int negativeCount = 100;
            int step          = negativeScanningWindows.Count / negativeCount;

            for (int i = 0; i < negativeCount; i++)
            {
                IBoundingBox bb = negativeScanningWindows[i * step];
                negativePatches.Add(initFrame.GetPatch(bb.Center, Size.Round(bb.Size)));
            }

            // update classifier with new positive and negative patches
            classifier.Update(positivePatches, negativePatches);

            // arrange - define current frame
            Image <Gray, byte> currentFrame = new Image <Gray, byte>(Path.Combine(_resourceDir, "LP_down_right.jpg"));

            // define expected
            List <int> expected = new List <int>()
            {
                3
            };

            // get actual
            List <int> actual = classifier.AcceptedWindows(currentFrame, new List <int> {
                0, 1, 2, 3
            });

            // assert
            CollectionAssert.AreEqual(expected, actual);
        }