private readonly Collections.Stack<Integer> _path; // Eulerian path; null if no suh path

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Computes an Eulerian path in the specified digraph, if one exists.
        /// </summary>
        /// <param name="g">g the digraph</param>
        public DirectedEulerianPath(Digraph g)
        {
            // find vertex from which to start potential Eulerian path:
            // a vertex v with outdegree(v) > indegree(v) if it exits;
            // otherwise a vertex with outdegree(v) > 0
            var deficit = 0;
            var s = NonIsolatedVertex(g);
            for (var v = 0; v < g.V; v++)
            {
                if (g.Outdegree(v) > g.Indegree(v))
                {
                    deficit += (g.Outdegree(v) - g.Indegree(v));
                    s = v;
                }
            }

            // digraph can't have an Eulerian path
            // (this condition is needed)
            if (deficit > 1) return;

            // special case for digraph with zero edges (has a degenerate Eulerian path)
            if (s == -1) s = 0;

            // create local view of adjacency lists, to iterate one vertex at a time
            var adj = new IEnumerator<Integer>[g.V];
            for (var v = 0; v < g.V; v++)
                adj[v] = g.Adj(v).GetEnumerator();

            // greedily add to cycle, depth-first search style
            var stack = new Collections.Stack<Integer>();
            stack.Push(s);
            _path = new Collections.Stack<Integer>();
            while (!stack.IsEmpty())
            {
                int v = stack.Pop();
                while (adj[v].MoveNext())
                {
                    stack.Push(v);
                    v = adj[v].Current;
                }
                // push vertex with no more available edges to path
                _path.Push(v);
            }

            // check if all edges have been used
            if (_path.Size() != g.E + 1)
                _path = null;

            //assert check(G);
        }
Exemplo n.º 2
0
        private readonly Collections.Stack<Integer> _path; // Eulerian path; null if no suh path

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Computes an Eulerian path in the specified graph, if one exists.
        /// </summary>
        /// <param name="g">g the graph</param>
        public EulerianPath(Graph g)
        {
            // find vertex from which to start potential Eulerian path:
            // a vertex v with odd degree(v) if it exits;
            // otherwise a vertex with degree(v) > 0
            var oddDegreeVertices = 0;
            var s = NonIsolatedVertex(g);
            for (var v = 0; v < g.V; v++)
            {
                if (g.Degree(v) % 2 != 0)
                {
                    oddDegreeVertices++;
                    s = v;
                }
            }

            // graph can't have an Eulerian path
            // (this condition is needed for correctness)
            if (oddDegreeVertices > 2) return;

            // special case for graph with zero edges (has a degenerate Eulerian path)
            if (s == -1) s = 0;

            // create local view of adjacency lists, to iterate one vertex at a time
            // the helper Edge data type is used to avoid exploring both copies of an edge v-w
            var adj = new Collections.Queue<EdgeW>[g.V];
            for (var v = 0; v < g.V; v++)
                adj[v] = new Collections.Queue<EdgeW>();

            for (var v = 0; v < g.V; v++)
            {
                var selfLoops = 0;
                foreach (int w in g.Adj(v))
                {
                    // careful with self loops
                    if (v == w)
                    {
                        if (selfLoops % 2 == 0)
                        {
                            var e = new EdgeW(v, w, 0);
                            adj[v].Enqueue(e);
                            adj[w].Enqueue(e);
                        }
                        selfLoops++;
                    }
                    else if (v < w)
                    {
                        var e = new EdgeW(v, w, 0);
                        adj[v].Enqueue(e);
                        adj[w].Enqueue(e);
                    }
                }
            }

            // initialize stack with any non-isolated vertex
            var stack = new Collections.Stack<Integer>();
            stack.Push(s);

            // greedily search through edges in iterative DFS style
            _path = new Collections.Stack<Integer>();
            while (!stack.IsEmpty())
            {
                int v = stack.Pop();
                while (!adj[v].IsEmpty())
                {
                    var edge = adj[v].Dequeue();
                    if (edge.IsUsed) continue;
                    edge.IsUsed = true;
                    stack.Push(v);
                    v = edge.Other(v);
                }
                // push vertex with no more leaving edges to path
                _path.Push(v);
            }

            // check if all edges are used
            if (_path.Size() != g.E + 1)
                _path = null;

            //assert certifySolution(G);
        }
Exemplo n.º 3
0
        private void Bfs(Graph g, int s)
        {
            var q = new Collections.Queue<Integer>();
            _color[s] = WHITE;
            _marked[s] = true;
            q.Enqueue(s);

            while (!q.IsEmpty())
            {
                int v = q.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    if (!_marked[w])
                    {
                        _marked[w] = true;
                        _edgeTo[w] = v;
                        _color[w] = !_color[v];
                        q.Enqueue(w);
                    }
                    else if (_color[w] == _color[v])
                    {
                        _isBipartite = false;

                        // to form odd cycle, consider s-v path and s-w path
                        // and let x be closest node to v and w common to two paths
                        // then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle
                        // Note: distTo[v] == distTo[w];
                        _cycle = new Collections.Queue<Integer>();
                        var stack = new Collections.Stack<Integer>();
                        int x = v, y = w;
                        while (x != y)
                        {
                            stack.Push(x);
                            _cycle.Enqueue(y);
                            x = _edgeTo[x];
                            y = _edgeTo[y];
                        }
                        stack.Push(x);
                        while (!stack.IsEmpty())
                            _cycle.Enqueue(stack.Pop());
                        _cycle.Enqueue(w);
                        return;
                    }
                }
            }
        }
Exemplo n.º 4
0
        private readonly Collections.Stack<Integer> _cycle = new Collections.Stack<Integer>(); // Eulerian cycle; null if no such cycle

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Computes an Eulerian cycle in the specified graph, if one exists.
        /// </summary>
        /// <param name="g">g the graph</param>
        public EulerianCycle(Graph g)
        {
            // must have at least one EdgeW
            if (g.E == 0) return;

            // necessary condition: all vertices have even degree
            // (this test is needed or it might find an Eulerian path instead of cycle)
            for (var v = 0; v < g.V; v++)
                if (g.Degree(v) % 2 != 0)
                    return;

            // create local view of adjacency lists, to iterate one vertex at a time
            // the helper EdgeW data type is used to avoid exploring both copies of an EdgeW v-w
            var adj = new Collections.Queue<EdgeW>[g.V];
            for (var v = 0; v < g.V; v++)
                adj[v] = new Collections.Queue<EdgeW>();

            for (var v = 0; v < g.V; v++)
            {
                var selfLoops = 0;
                foreach (int w in g.Adj(v))
                {
                    // careful with self loops
                    if (v == w)
                    {
                        if (selfLoops % 2 == 0)
                        {
                            var e = new EdgeW(v, w, 0);
                            adj[v].Enqueue(e);
                            adj[w].Enqueue(e);
                        }
                        selfLoops++;
                    }
                    else if (v < w)
                    {
                        var e = new EdgeW(v, w, 0);
                        adj[v].Enqueue(e);
                        adj[w].Enqueue(e);
                    }
                }
            }

            // initialize Collections.Stack with any non-isolated vertex
            var s = NonIsolatedVertex(g);
            var stack = new Collections.Stack<Integer>();
            stack.Push(s);

            // greedily search through EdgeWs in iterative DFS style
            _cycle = new Collections.Stack<Integer>();
            while (!stack.IsEmpty())
            {
                int v = stack.Pop();
                while (!adj[v].IsEmpty())
                {
                    var edgeW = adj[v].Dequeue();
                    if (edgeW.IsUsed) continue;
                    edgeW.IsUsed = true;
                    stack.Push(v);
                    v = edgeW.Other(v);
                }
                // push vertex with no more leaving EdgeWs to cycle
                _cycle.Push(v);
            }

            // check if all EdgeWs are used
            if (_cycle.Size() != g.E + 1)
                _cycle = null;

            //assert certifySolution(G);
        }