Exemplo n.º 1
0
		//***********************************************************************
		// Tests the correct implementation of the modulo exponential function
		// using RSA encryption and decryption (using pre-computed encryption and
		// decryption keys).
		//***********************************************************************

		internal static void RSATest(int rounds)
		{
			Random rand = new Random(1);
			byte[] val = new byte[64];

			// private and public key
			BigInteger bi_e =
				new BigInteger(
					"a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7",
					16);
			BigInteger bi_d =
				new BigInteger(
					"4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7",
					16);
			BigInteger bi_n =
				new BigInteger(
					"e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f",
					16);

			Console.WriteLine("e =\n" + bi_e.ToString(10));
			Console.WriteLine("\nd =\n" + bi_d.ToString(10));
			Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.ModPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.ModPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
Exemplo n.º 2
0
		//***********************************************************************
		// Tests the correct implementation of the modulo exponential and
		// inverse modulo functions using RSA encryption and decryption.  The two
		// pseudoprimes p and q are fixed, but the two RSA keys are generated
		// for each round of testing.
		//***********************************************************************

		internal static void RSATest2(int rounds)
		{
			Random rand = new Random();
			byte[] val = new byte[64];

			byte[] pseudoPrime1 = {
			                      	0x85, 0x84, 0x64, 0xFD, 0x70, 0x6A,
			                      	0x9F, 0xF0, 0x94, 0x0C, 0x3E, 0x2C,
			                      	0x74, 0x34, 0x05, 0xC9, 0x55, 0xB3,
			                      	0x85, 0x32, 0x98, 0x71, 0xF9, 0x41,
			                      	0x21, 0x5F, 0x02, 0x9E, 0xEA, 0x56,
			                      	0x8D, 0x8C, 0x44, 0xCC, 0xEE, 0xEE,
			                      	0x3D, 0x2C, 0x9D, 0x2C, 0x12, 0x41,
			                      	0x1E, 0xF1, 0xC5, 0x32, 0xC3, 0xAA,
			                      	0x31, 0x4A, 0x52, 0xD8, 0xE8, 0xAF,
			                      	0x42, 0xF4, 0x72, 0xA1, 0x2A, 0x0D,
			                      	0x97, 0xB1, 0x31, 0xB3,
			                      };

			byte[] pseudoPrime2 = {
			                      	0x99, 0x98, 0xCA, 0xB8, 0x5E, 0xD7,
			                      	0xE5, 0xDC, 0x28, 0x5C, 0x6F, 0x0E,
			                      	0x15, 0x09, 0x59, 0x6E, 0x84, 0xF3,
			                      	0x81, 0xCD, 0xDE, 0x42, 0xDC, 0x93,
			                      	0xC2, 0x7A, 0x62, 0xAC, 0x6C, 0xAF,
			                      	0xDE, 0x74, 0xE3, 0xCB, 0x60, 0x20,
			                      	0x38, 0x9C, 0x21, 0xC3, 0xDC, 0xC8,
			                      	0xA2, 0x4D, 0xC6, 0x2A, 0x35, 0x7F,
			                      	0xF3, 0xA9, 0xE8, 0x1D, 0x7B, 0x2C,
			                      	0x78, 0xFA, 0xB8, 0x02, 0x55, 0x80,
			                      	0x9B, 0xC2, 0xA5, 0xCB,
			                      };

			BigInteger bi_p = new BigInteger(pseudoPrime1);
			BigInteger bi_q = new BigInteger(pseudoPrime2);
			BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
			BigInteger bi_n = bi_p * bi_q;

			for (int count = 0; count < rounds; count++)
			{
				// generate private and public key
				BigInteger bi_e = bi_pq.GenerateCoprime(512, rand);
				BigInteger bi_d = bi_e.ModInverse(bi_pq);

				Console.WriteLine("\ne =\n" + bi_e.ToString(10));
				Console.WriteLine("\nd =\n" + bi_d.ToString(10));
				Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 65);

				bool done = false;
				while (!done)
				{
					for (int i = 0; i < 64; i++)
					{
						if (i < t1)
							val[i] = (byte)(rand.NextDouble() * 256);
						else
							val[i] = 0;

						if (val[i] != 0)
							done = true;
					}
				}

				while (val[0] == 0)
					val[0] = (byte)(rand.NextDouble() * 256);

				Console.Write("Round = " + count);

				// encrypt and decrypt data
				BigInteger bi_data = new BigInteger(val, t1);
				BigInteger bi_encrypted = bi_data.ModPow(bi_e, bi_n);
				BigInteger bi_decrypted = bi_encrypted.ModPow(bi_d, bi_n);

				// compare
				if (bi_decrypted != bi_data)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(bi_data + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
Exemplo n.º 3
0
		//***********************************************************************
		// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		//
		// p is probably prime if for any a < p (a is not multiple of p),
		// a^((p-1)/2) mod p = J(a, p)
		//
		// where J is the Jacobi symbol.
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a Euler pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		///
		/// p is probably prime if for any a &lt; p (a is not multiple of p),
		/// a^((p-1)/2) mod p = J(a, p)
		///
		/// where J is the Jacobi symbol.
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a Euler pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool SolovayStrassenTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				BigInteger p_sub1 = thisVal - 1;
				BigInteger p_sub1_shift = p_sub1 >> 1;

				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					// calculate a^((p-1)/2) mod p

					BigInteger expResult = a.ModPow(p_sub1_shift, thisVal);
					if (expResult == p_sub1)
						expResult = -1;

					// calculate Jacobi symbol
					BigInteger jacob = Jacobi(a, thisVal);

					//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
					//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

					// if they are different then it is not prime
					if (expResult != jacob)
						return false;
				}

				return true;
			}
		}
Exemplo n.º 4
0
		//***********************************************************************
		// Probabilistic prime test based on Rabin-Miller's
		//
		// for any p > 0 with p - 1 = 2^s * t
		//
		// p is probably prime (strong pseudoprime) if for any a < p,
		// 1) a^t mod p = 1 or
		// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a strong pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Rabin-Miller's
		///
		/// for any p &gt; 0 with p - 1 = 2^s * t
		///
		/// p is probably prime (strong pseudoprime) if for any a &lt; p,
		/// 1) a^t mod p = 1 or
		/// 2) a^((2^j)*t) mod p = p-1 for some 0 &lt;= j &lt;= s-1
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a strong pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool RabinMillerTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				// calculate values of s and t
				BigInteger p_sub1 = thisVal - (new BigInteger(1));
				int s = 0;

				for (int index = 0; index < p_sub1.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((p_sub1.data[index] & mask) != 0)
						{
							index = p_sub1.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = p_sub1 >> s;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					BigInteger b = a.ModPow(t, thisVal);

					/*
								Console.WriteLine("a = " + a.ToString(10));
								Console.WriteLine("b = " + b.ToString(10));
								Console.WriteLine("t = " + t.ToString(10));
								Console.WriteLine("s = " + s);
								*/

					bool result = false;

					if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
						result = true;

					for (int j = 0; result == false && j < s; j++)
					{
						if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
						{
							result = true;
							break;
						}

						b = (b * b) % thisVal;
					}

					if (result == false)
						return false;
				}
				return true;
			}
		}
Exemplo n.º 5
0
		//***********************************************************************
		// Probabilistic prime test based on Fermat's little theorem
		//
		// for any a < p (p does not divide a) if
		//      a^(p-1) mod p != 1 then p is not prime.
		//
		// Otherwise, p is probably prime (pseudoprime to the chosen base).
		//
		// Returns
		// -------
		// True if "this" is a pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		// Note - this method is fast but fails for Carmichael numbers except
		// when the randomly chosen base is a factor of the number.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Fermat's little theorem
		///
		/// for any a &lt; p (p does not divide a) if
		///      a^(p-1) mod p != 1 then p is not prime.
		///
		/// Otherwise, p is probably prime (pseudoprime to the chosen base).
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool FermatLittleTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				BigInteger p_sub1 = thisVal - (new BigInteger(1));
				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					// calculate a^(p-1) mod p
					BigInteger expResult = a.ModPow(p_sub1, thisVal);

					int resultLen = expResult.dataLength;

					// is NOT prime is a^(p-1) mod p != 1

					if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
					{
						//Console.WriteLine("a = " + a.ToString());
						return false;
					}
				}

				return true;
			}
		}
Exemplo n.º 6
0
 /// <summary>
 /// Decrypts the specified Biginteger.
 /// </summary>
 /// <param name="encryptedValue">The BigInteger to decrypt.</param>
 /// <returns></returns>
 public BigInteger Decrypt(BigInteger encryptedValue)
 {
     if (encryptedValue == null)
         throw new ArgumentNullException("encryptedValue");
     return encryptedValue.ModPow(key.PublicKey.Exponent, key.PublicKey.Modulus);
 }
Exemplo n.º 7
0
 /// <summary>
 /// Encrypts the specified Biginteger.
 /// </summary>
 /// <param name="decryptedValue">The Biginteger to encrypt.</param>
 /// <returns></returns>
 public BigInteger Encrypt(BigInteger decryptedValue)
 {
     if (decryptedValue == null)
         throw new ArgumentNullException("decryptedValue");
     return decryptedValue.ModPow(key.PrivateKey.Exponent, key.PrivateKey.Modulus);
 }