Exemplo n.º 1
0
 void ISolutionBuilder.setStandartModel(SimplexModel model)
 {
     m_BaseModel     = model;
     m_StandartModel = new StandartSimplexModel(model);
     m_RevisedModel  = new RevisedSimplexModel(m_StandartModel);
     m_RevisedModel.ConvertStandardModel();
 }
Exemplo n.º 2
0
        private Solution SolveTwoPhase(StandartSimplexModel simplexModel)
        {
            Solution tmp_solution = new Solution()
            {
                Quality = Enums.SolutionQuality.Infeasible
            };

            simplexModel.CurrentPhase = 1;
            simplexModel.PrintMatrix();
            //1) Solve the matrix for phase I

            /*
             * Steps
             * 1. Modify the constraints so that the RHS of each constraint is nonnegative (This requires that each constraint with a negative RHS be multiplied by -1. Remember that if you multiply an inequality by any negative number, the direction of the inequality is reversed!). After modification, identify each constraint as a ≤, ≥ or = constraint.
             * 2. Convert each inequality constraint to standard form (If constraint i is a ≤ constraint, we add a slack variable si; and if constraint i is a ≥ constraint, we subtract an excess variable ei).
             * 3. Add an artificial variable ai to the constraints identified as ≥ or = constraints at the end of Step 1. Also add the sign restriction ai ≥ 0.
             * 4. In the phase I, ignore the original LP’s objective function, instead solve an LP whose objective function is minimizing w = ai (sum of all the artificial variables). The act of solving the Phase I LP will force the artificial variables to be zero. 5. Since each artificial variable will be in the starting basis, all artificial variables must be eliminated from row 0 before beginning the simplex. Now solve the transformed problem by the simplex.
             */
            VariableType tmp_inclusive = VariableType.Original | VariableType.Slack | VariableType.Excess;

            m_ColumnSelector = ColumnSelectorFactory.GetSelector(ObjectiveType.Minumum);
            tmp_solution     = Solve(simplexModel.VarTypes, tmp_inclusive, simplexModel.ArtificialObjectiveMatrix, simplexModel.ConstarintMatrix, simplexModel.RightHandMatrix, simplexModel.BasicVariables, simplexModel.ObjectiveCost, true);
            //Solving the Phase I LP will result in one of the following three cases:
            //I.Case : If w = 0
            //TODO test //tmp_solution.RightHandValues[tmp_solution.RightHandValues.GetLength(0) - 1, 0] = 0;
            if (tmp_solution.ResultValue <= m_epsilon)
            {
                simplexModel.CurrentPhase = 2;

                //transfer the phaseoneobjective function factors
                simplexModel.TruncatePhaseResult(tmp_solution);
                simplexModel.PrintMatrix();
                //II.Case : If w = 0, and no artificial variables are in the optimal Phase I basis:
                //  i.Drop all columns in the optimal Phase I tableau that correspond to the artificial variables.Drop Phase I row 0.
                //  ii.Combine the original objective function with the constraints from the optimal Phase I tableau(Phase II LP).If original objective function coefficients of BVs are nonzero row operations are done.
                //  iii.Solve Phase II LP using the simplex method.The optimal solution to the Phase II LP is the optimal solution to the original LP.
                //if ( )
                //III.Case : If w = 0, and at least one artificial variable is in the optimal Phase I basis:
                //  i.Drop all columns in the optimal Phase I tableau that correspond to the nonbasic artificial variables and any variable from the original problem that has a negative coefficient in row 0 of the optimal Phase I tableau. Drop Phase I row 0.
                //  ii.Combine the original objective function with the constraints from the optimal Phase I tableau(Phase II LP).If original objective function coefficients of BVs are nonzero row operations are done.
                //  iii.Solve Phase II LP using the simplex method.The optimal solution to the Phase II LP is the optimal solution to the original LP.
                //if ( )
                tmp_solution = Solve(simplexModel.VarTypes, tmp_inclusive, simplexModel.ObjectiveMatrix, simplexModel.ConstarintMatrix, simplexModel.RightHandMatrix, simplexModel.BasicVariables, simplexModel.ObjectiveCost, simplexModel.GoalType == ObjectiveType.Minumum);
                System.Diagnostics.Debug.WriteLine("Solution " + tmp_solution.Quality.ToString());
            }
            //II.Case  : If w > 0 then the original LP has no feasible solution(stop here).
            else
            {
                tmp_solution.Quality = SolutionQuality.Infeasible;
            }
            //assign the actual value to the result terms
            PrepareSolutionResult(simplexModel.ConstarintMatrix, simplexModel.RightHandMatrix, simplexModel.ObjectiveFunction.Terms, tmp_solution);
            return(tmp_solution);
        }
Exemplo n.º 3
0
        internal static void TruncatePhaseResult(this StandartSimplexModel model, Solution solution)
        {
            //transfer the phaseoneobjective function factors
            List <int> tmp_RemoveArtficialIndex = new List <int>();
            List <int> tmp_RemoveOtherIndex     = new List <int>();
            List <int> tmp_totalRemoveIndex     = new List <int>();
            bool       tmp_retainArtficialFound = false; //if retain and remove count are eqauls as aritmetich operation

            for (int i = 0; i < model.ArtificialObjectiveMatrix.ColumnCount; i++)
            {
                if (model.VarTypes[i] == VariableType.Artificial)
                {
                    if (model.ArtificialObjectiveMatrix[0, i] < 0)
                    {
                        tmp_RemoveArtficialIndex.Add(i);
                    }
                    else
                    {
                        tmp_retainArtficialFound = true;
                    }
                }
                else
                {
                    if (model.ArtificialObjectiveMatrix[0, i] < 0)
                    {
                        tmp_RemoveOtherIndex.Add(i);
                    }
                }
            }

            //II.Case : If w = 0, and no artificial variables are in the optimal Phase I basis:
            //  i.Drop all columns in the optimal Phase I tableau that correspond to the artificial variables.Drop Phase I row 0.
            //  ii.Combine the original objective function with the constraints from the optimal Phase I tableau(Phase II LP).If original objective function coefficients of BVs are nonzero row operations are done.
            //  iii.Solve Phase II LP using the simplex method.The optimal solution to the Phase II LP is the optimal solution to the original LP.
            if (!tmp_retainArtficialFound)
            {
                tmp_totalRemoveIndex = tmp_RemoveArtficialIndex;
            }
            //III.Case : If w = 0, and at least one artificial variable is in the optimal Phase I basis:
            //  i.Drop all columns in the optimal Phase I tableau that correspond to the nonbasic artificial variables and any variable from the original problem that has a negative coefficient in row 0 of the optimal Phase I tableau. Drop Phase I row 0.
            //  ii.Combine the original objective function with the constraints from the optimal Phase I tableau(Phase II LP).If original objective function coefficients of BVs are nonzero row operations are done.
            //  iii.Solve Phase II LP using the simplex method.The optimal solution to the Phase II LP is the optimal solution to the original LP.
            else
            {
                //merge and sort removed artificial and removed other variables
                tmp_totalRemoveIndex.AddRange(tmp_RemoveArtficialIndex);
                tmp_totalRemoveIndex.AddRange(tmp_RemoveOtherIndex);
            }

            tmp_totalRemoveIndex.Sort();
            TruncatePhaseColumns(model, tmp_totalRemoveIndex, model.BasicVariables);
        }
Exemplo n.º 4
0
        private Solution SolveStandart(StandartSimplexModel simplexModel)
        {
            //simplexModel.ConvertStandardModel();
            simplexModel.PrintMatrix();
            //simplexModel.CreateMatrixSet();
            VariableType tmp_inclusive = VariableType.Original | VariableType.Slack;

            Solution tmp_solution = Solve(simplexModel.VarTypes, tmp_inclusive, simplexModel.ObjectiveMatrix, simplexModel.ConstarintMatrix, simplexModel.RightHandMatrix, simplexModel.BasicVariables, simplexModel.ObjectiveCost, simplexModel.GoalType == ObjectiveType.Minumum);

            PrepareSolutionResult(simplexModel.ConstarintMatrix, simplexModel.RightHandMatrix, simplexModel.ObjectiveFunction.Terms, tmp_solution);

            return(tmp_solution);
        }
Exemplo n.º 5
0
        internal static void PhaseOnePrintMatrix(this StandartSimplexModel model)
        {
            model.PrintMatrix();

            string tmp_sign = string.Empty;

            System.Diagnostics.Debug.WriteLine("Goal :" + model.GoalType.ToString());
            System.Diagnostics.Debug.Write("New Objective Function - " + model.GoalType.ToString() + ": ");
            foreach (Term item in model.PhaseObjectiveFunction.Terms)
            {
                tmp_sign = string.Empty;
                if (Math.Sign(item.Factor) > -1)
                {
                    tmp_sign = "+";
                }
                System.Diagnostics.Debug.Write(tmp_sign + item.Factor + "*" + item.Vector + " ");
            }
            System.Diagnostics.Debug.Write(" = ");
            System.Diagnostics.Debug.WriteLine(model.PhaseObjectiveFunction.RightHandValue);
            System.Diagnostics.Debug.WriteLine("*********************************");
        }
Exemplo n.º 6
0
        private static void TruncatePhaseColumns(StandartSimplexModel model, List <int> removeList, List <int> basicVariables)
        {
            //declare new matrix for replace Phase I result
            int tmp_rowCount       = model.ConstarintMatrix.RowCount;
            int tmp_oldColumnCount = model.ObjectiveMatrix.ColumnCount;
            int tmp_removeCount    = removeList.Count;

            //int[] tmp_basic = new int[tmp_oldColumnCount - tmp_removeCount];
            double[]       tmp_objectiveMatrix = new double[tmp_oldColumnCount - tmp_removeCount];
            VariableType[] tmp_types           = new VariableType[tmp_oldColumnCount - tmp_removeCount];
            double[,] tmp_constarintMatrix = new double[tmp_rowCount, tmp_oldColumnCount - tmp_removeCount];

            //transfer the basic flag to teh temprory array
            for (int i = removeList.Count - 1; i > -1; i--)
            {
                for (int j = 0; j < basicVariables.Count; j++)
                {
                    if (basicVariables[j] > removeList[i])
                    {
                        basicVariables[j] = basicVariables[j] - 1;
                    }
                }
            }
            Dictionary <Term, Subject> tmp_RemovePairList = new Dictionary <Term, Subject>();
            int tmp_newIndex = 0;

            for (int i = 0; i < model.ArtificialObjectiveMatrix.ColumnCount; i++)
            {
                if (removeList.Contains(i))
                {
                    tmp_RemovePairList.Add(model.ObjectiveFunction.Terms[i], model.ObjectiveFunction);
                    for (int j = 0; j < model.ConstarintMatrix.RowCount; j++)
                    {
                        tmp_RemovePairList.Add(model.Subjects[j].Terms[i], model.Subjects[j]);
                    }
                }
                else
                {
                    //narrow the types
                    tmp_types[tmp_newIndex] = model.VarTypes[i];
                    //narrow the basic matrix value
                    tmp_objectiveMatrix[tmp_newIndex] = model.ObjectiveMatrix[0, i];
                    for (int j = 0; j < model.ConstarintMatrix.RowCount; j++)
                    {
                        tmp_constarintMatrix[j, tmp_newIndex] = Math.Round(model.ConstarintMatrix[j, i], 5);
                    }
                    tmp_newIndex++;
                }
            }

            foreach (KeyValuePair <Term, Subject> item in tmp_RemovePairList)
            {
                item.Value.Terms.Remove(item.Key);
            }

            //Update the objective function original variable with cosntraint value;
            double[] tmp_objectiveMatrixUpdated = new double[tmp_objectiveMatrix.Length];
            tmp_objectiveMatrix.CopyTo(tmp_objectiveMatrixUpdated, 0);
            //VariableType tmp_inclusive = (VariableType.Original | VariableType.Slack | VariableType.Excess);
            double tmp_pivotValue = 0;

            for (int i = 0; i < tmp_objectiveMatrix.Length; i++)
            {
                //is variable inclusion group
                //if (tmp_objectiveMatrix[i] != 0 && tmp_types[i] == (tmp_types[i] & tmp_inclusive))
                if (tmp_objectiveMatrix[i] != 0 && basicVariables.Contains(i) && tmp_constarintMatrix[basicVariables.IndexOf(i), i] == 1)
                {
                    tmp_pivotValue = tmp_objectiveMatrix[i];
                    //Find the related cosntraint row
                    for (int j = 0; j < tmp_constarintMatrix.GetLength(0); j++)
                    {
                        //pivot cell must be addresset by unit matrix
                        if (tmp_constarintMatrix[j, i] != 1)
                        {
                            continue;
                        }

                        //5)Calculate new objective Row (Rn') by multiple contraint factor.RO'=RO-xRn'
                        for (int k = 0; k < tmp_objectiveMatrix.Length; k++)
                        {
                            tmp_objectiveMatrixUpdated[k] = Math.Round(tmp_objectiveMatrixUpdated[k] - tmp_pivotValue * tmp_constarintMatrix[j, k], 5);
                        }
                        //in addition set the left value
                        model.ObjectiveCost = Math.Round(model.ObjectiveCost - tmp_pivotValue * model.RightHandMatrix[j, 0], 5);
                    }
                }
            }
            model.VarTypes         = tmp_types;
            model.ObjectiveMatrix  = new Matrix(tmp_objectiveMatrixUpdated);
            model.ConstarintMatrix = new Matrix(tmp_constarintMatrix);
            model.BasicVariables   = basicVariables;
            model.ObjectiveCost    = 0;
        }
Exemplo n.º 7
0
        internal static void CreateMatrixSet(this StandartSimplexModel model)
        {
            int rowCount    = model.Subjects.Count;
            int columnCount = model.ObjectiveFunction.Terms.Count;

            double[] tmp_objectiveMatrix = new double[columnCount];
            //miz w= a1  + a2 + a3 + .. +an
            double[]       tmp_phaseObjectiveMatrix = new double[columnCount];
            VariableType[] tmp_types = new VariableType[columnCount];
            double[,] tmp_constarintMatrix = new double[rowCount, columnCount];
            double[,] tmp_RightHandMatrix  = new double[rowCount, 1]; // +1 is for objective function, second dimension is for ratio

            List <int> tmp_basicVariables = new List <int>();
            int        tmp_colIndex       = -1;

            //set the basic variable flag as -1
            for (int i = 0; i < rowCount; i++)
            {
                tmp_basicVariables.Add(-1);
            }

            for (int j = 0; j < columnCount; j++)
            {
                tmp_objectiveMatrix[j] = model.ObjectiveFunction.Terms[j].Factor;
                tmp_types[j]           = model.ObjectiveFunction.Terms[j].VarType;
            }

            for (int i = 0; i < rowCount; i++)
            {
                tmp_colIndex = 0;
                for (int j = 0; j < columnCount; j++)
                {
                    //we add absolutely column element to the constarint matrix.
                    tmp_constarintMatrix[i, j] = model.Subjects[i].Terms[j].Factor;
                    //if term is basic, let us calculate the constarint matrix
                    if (model.ObjectiveFunction.Terms[j].Basic)// && model.Subjects[i].Terms[j].Factor==1)
                    {
                        //basic variable flag
                        if (tmp_constarintMatrix[i, j] == 1)// && tmp_rowIndex == tmp_colIndex)
                        {
                            tmp_basicVariables[i] = j;
                        }
                        tmp_colIndex++;
                    }
                }
                tmp_RightHandMatrix[i, 0] = model.Subjects[i].RightHandValue;
            }

            if (model.IsTwoPhase)
            {
                for (int j = 0; j < columnCount; j++)
                {
                    tmp_phaseObjectiveMatrix[j] = (-1) * model.PhaseObjectiveFunction.Terms[j].Factor;
                }
                model.ObjectiveCost = (-1) * model.PhaseObjectiveFunction.RightHandValue;
            }

            model.ObjectiveMatrix           = new Matrix(tmp_objectiveMatrix);
            model.ArtificialObjectiveMatrix = new Matrix(tmp_phaseObjectiveMatrix);
            model.RightHandMatrix           = new Matrix(tmp_RightHandMatrix);
            model.ConstarintMatrix          = new Matrix(tmp_constarintMatrix);
            model.VarTypes       = tmp_types;
            model.BasicVariables = tmp_basicVariables;
        }