Exemplo n.º 1
0
        /// <summary>
        /// Simple overall prediction 
        /// </summary>
        /// <param name="scene"></param>
        /// <param name="u"></param>
        /// <param name="delta_t"></param>
        public void predict_filter_slow (Scene_Single scene, Vector u, float delta_t)
        {
            Debug.WriteLine("*** SLOW PREDICTION ***");

            // What we need to do for the prediction:
     
            //    Calculate f and grad_f_x
            //    Calculate Q
            //    Form x(k+1|k) and P(k+1|k)

            int size = (int)scene.get_total_state_size();

            // First form original total state and covariance
            Vector x = new Vector(size);
            MatrixFixed P = new MatrixFixed(size, size);
            scene.construct_total_state_and_covariance(ref x, ref P);

            // Make model calculations: store results in RES matrices
            Vector xv = scene.get_xv();
            //Vector xv = new Vector(scene.get_xv());
            scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t);
            scene.get_motion_model().func_Q(scene.get_xv(), u, delta_t);

            // Find new state f
            Vector f = new Vector(size);

            // Feature elements of f are the same as x 
            f.Update(x);
            f.Update(scene.get_motion_model().get_fvRES(), 0);

            // Find new P

            // Since most elements of df_by_dx are zero... 
            MatrixFixed df_by_dx = new MatrixFixed(size, size);
            df_by_dx.Fill(0.0f);

            // Fill the rest of the elements of df_by_dx: 1 on diagonal for features
            for (int i = (int)scene.get_motion_model().STATE_SIZE; i < df_by_dx.Rows; i++)
                df_by_dx[i,i] = 1.0f;

            df_by_dx.Update(scene.get_motion_model().get_dfv_by_dxvRES(), 0, 0);

            // Calculate the process noise
            MatrixFixed Q = new MatrixFixed(size, size);
            Q.Fill(0.0f);
            Q.Update(scene.get_motion_model().get_QxRES(), 0, 0);

            P.Update(df_by_dx * P * df_by_dx.Transpose());

            P += Q;

            scene.fill_state_and_covariance(f, P);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Convert a partially-initialised feature to a fully-initialised feature,
        /// given information about the free parameters \vct{\lambda}.
        /// The new state \vct{y}_{fi} is given by calling
        /// Partially_Initialised_Feature_Measurement_Model::func_yfi_and_dyfi_by_dypi_and_dyfi_by_dlambda().
        /// where the various Jacobians are returned by calls to
        /// Partially_Initialised_Feature_Measurement_Model, and the covariance matrices
        /// \mat{P}_{kl} are already known and stored in the class, except for
        /// \mat{P}_{\vct{\lambda}}, which is passed to the function.
        /// </summary>
        /// <param name="lambda">The mean value for \vct{\lambda}</param>
        /// <param name="Plambda">The covariance for \vct{\lambda}</param>
        /// <param name="scene">The SLAM map</param>
        public void convert_from_partially_to_fully_initialised(
                Vector lambda, MatrixFixed Plambda, Scene_Single scene)
        {
            
            // We'll do all the work here in feature.cc though probably this only
            // works with scene_single...

            // We calculate new state yfi(ypi, lambda)
            // New feature covariance 
            // Pyfiyfi = dyfi_by_dypi Pypiypi dyfi_by_dypiT + 
            //           dyfi_by_dlambda Plambda dyfi_by_dlambdaT
            // And we change cross covariances as follows:
            // Pxyfi = Pxypi dyfi_by_dypiT
            // Pyjyfi = Pyjypi dyfi_by_dypiT   for j < i (since we only store top-right
            // Pyfiyj = dyfi_by_dypi Pypiyj    for j > i  part of covariance matrix)

            partially_initialised_feature_measurement_model.func_yfi_and_dyfi_by_dypi_and_dyfi_by_dlambda(y, lambda);

            MatrixFixed dyfi_by_dypiT = partially_initialised_feature_measurement_model.get_dyfi_by_dypiRES().Transpose();
            MatrixFixed dyfi_by_dlambdaT = partially_initialised_feature_measurement_model.get_dyfi_by_dlambdaRES().Transpose();

            // Replace y            
            y = new Vector(partially_initialised_feature_measurement_model.get_yfiRES());

            // Replace Pxy
            Pxy = Pxy * dyfi_by_dypiT;

            // Replace Pyy
            MatrixFixed Pypiypi_1 = partially_initialised_feature_measurement_model.get_dyfi_by_dypiRES() *
                        Pyy * dyfi_by_dypiT;
            MatrixFixed Pypiypi_2 = partially_initialised_feature_measurement_model.get_dyfi_by_dlambdaRES() *
                        Plambda * dyfi_by_dlambdaT;
            Pyy = Pypiypi_1 + Pypiypi_2;

            // Pyjyi elements for j < i (covariance with features before i in list)
            uint i = position_in_list;

            MatrixFixed m_it;
            int j;
            for (j = 0; j < position_in_list; j++)
            {
                m_it = (MatrixFixed)matrix_block_list[j];
                matrix_block_list[j] = m_it * dyfi_by_dypiT;
            }


            Feature it;
            int idx = scene.feature_list.IndexOf(this);
            for (j = idx + 1; j < scene.feature_list.Count; j++)
            {
                it = (Feature)(scene.feature_list[j]);
                it.matrix_block_list[(int)i] = partially_initialised_feature_measurement_model.get_dyfi_by_dypiRES() * (MatrixFixed)it.matrix_block_list[(int)i];
                it.increment_position_in_total_state_vector(-(int)feature_measurement_model.FEATURE_STATE_SIZE);
            }


            // Change the total state size in scene, here with a negative increment
            uint size1 = partially_initialised_feature_measurement_model.more_initialised_feature_measurement_model.FEATURE_STATE_SIZE;
            uint size2 = partially_initialised_feature_measurement_model.FEATURE_STATE_SIZE;
            scene.increment_total_state_size((int)size1 - (int)size2);

            // Change fmm for this model to fully-initialised one
            feature_measurement_model =
                partially_initialised_feature_measurement_model.more_initialised_feature_measurement_model;

            partially_initialised_feature_measurement_model = null;
            fully_initialised_feature_measurement_model =
                (Fully_Initialised_Feature_Measurement_Model)feature_measurement_model;


            //assert(fully_initialised_feature_measurement_model != NULL);

            // Need to reallocate any other matrices
            // Assume that measurement size doesn't change 
            dh_by_dy.Resize(feature_measurement_model.MEASUREMENT_SIZE, feature_measurement_model.FEATURE_STATE_SIZE);
                         
             
        }
Exemplo n.º 3
0
        /// <summary>
        /// Constructor for known features. The different number of 
        /// arguments differentiates it from the constructor for partially-initialised
        /// features
        /// </summary>
        /// <param name="id">reference to the feature identifier</param>
        /// <param name="?"></param>
        public Feature(classimage_mono id, uint lab, uint list_pos,
                       Scene_Single scene, Vector y_known,
                       Vector xp_o,
                       Feature_Measurement_Model f_m_m, uint k_f_l)
        {
            feature_measurement_model = f_m_m;
            feature_constructor_bookeeping();

            identifier = id;
            label = lab;
            position_in_list = list_pos;   // Position of new feature in list

            // Save the vehicle position where this feature was acquired 
            xp_orig = new Vector(xp_o);

            // Straighforward initialisation of state and covariances
            y = y_known;
            Pxy = new MatrixFixed(scene.get_motion_model().STATE_SIZE, feature_measurement_model.FEATURE_STATE_SIZE);
            Pxy.Fill(0.0f);
            Pyy = new MatrixFixed(feature_measurement_model.FEATURE_STATE_SIZE, feature_measurement_model.FEATURE_STATE_SIZE);
            Pyy.Fill(0.0f);

            int i = 0;
            MatrixFixed newPyjyi_to_store;
            foreach (Feature it in scene.get_feature_list_noconst())
            {
                if (i < position_in_list)
                {
                    newPyjyi_to_store = new MatrixFixed(
                        it.get_feature_measurement_model().FEATURE_STATE_SIZE,
                        feature_measurement_model.FEATURE_STATE_SIZE);

                    //add to the list
                    matrix_block_list.Add(newPyjyi_to_store);
                }

                i++;
            }

            known_feature_label = (int)k_f_l;

            if (feature_measurement_model.fully_initialised_flag)
            {
                partially_initialised_feature_measurement_model = null;
                fully_initialised_feature_measurement_model =
                    (Fully_Initialised_Feature_Measurement_Model)feature_measurement_model;
            }
            else
            {
                fully_initialised_feature_measurement_model = null;
                partially_initialised_feature_measurement_model =
                    (Partially_Initialised_Feature_Measurement_Model)feature_measurement_model;
            }
        }
Exemplo n.º 4
0
        /// <summary>
        /// Constructor for partially-initialised features.
        /// </summary>
        /// <param name="id">reference to the feature</param>
        /// <param name="lab"></param>
        /// <param name="list_pos"></param>
        /// <param name="scene"></param>
        /// <param name="h"></param>
        /// <param name="p_i_f_m_m"></param>
        public Feature(classimage_mono id, uint lab, uint list_pos,
                       Scene_Single scene, Vector h,
                       Partially_Initialised_Feature_Measurement_Model p_i_f_m_m,
                       Vector feature_colour)
        {
            feature_measurement_model = p_i_f_m_m;
            partially_initialised_feature_measurement_model = p_i_f_m_m;
            fully_initialised_feature_measurement_model = null;

            // Stuff below substituted from Feature_common
            //   Feature_common(id, lab, list_pos, scene, h);

            feature_constructor_bookeeping();

            identifier = id;
            label = lab;
            position_in_list = list_pos;   // Position of new feature in list
            position_in_total_state_vector = 0; // This should be set properly
            colour = feature_colour;
            //when feature is added 

            // Save the vehicle position where this feature was acquired 
            scene.get_motion_model().func_xp(scene.get_xv());
            //xp_orig = scene.get_motion_model().get_xpRES();
            xp_orig = new Vector(scene.get_motion_model().get_xpRES());

            // Call model functions to calculate feature state, measurement noise
            // and associated Jacobians. Results are stored in RES matrices 

            // First calculate "position state" and Jacobian
            scene.get_motion_model().func_xp(scene.get_xv());
            scene.get_motion_model().func_dxp_by_dxv(scene.get_xv());

            // Now ask the model to initialise the state vector and calculate Jacobians
            // so that I can go and calculate the covariance matrices
            partially_initialised_feature_measurement_model.func_ypi_and_dypi_by_dxp_and_dypi_by_dhi_and_Ri(h, scene.get_motion_model().get_xpRES());

            // State y
            //y = partially_initialised_feature_measurement_model.get_ypiRES();
            y = new Vector(partially_initialised_feature_measurement_model.get_ypiRES());

            // Temp_FS1 will store dypi_by_dxv
            MatrixFixed Temp_FS1 =
                     partially_initialised_feature_measurement_model.get_dypi_by_dxpRES() *
                     scene.get_motion_model().get_dxp_by_dxvRES();

            // Pxy  
            Pxy = scene.get_Pxx() * Temp_FS1.Transpose();

            // Pyy
            Pyy = Temp_FS1 * scene.get_Pxx() * Temp_FS1.Transpose()
                  + partially_initialised_feature_measurement_model.get_dypi_by_dhiRES()
                  * partially_initialised_feature_measurement_model.get_RiRES()
                  * partially_initialised_feature_measurement_model.get_dypi_by_dhiRES().Transpose();

            // Covariances of this feature with others
            int j = 0;
            foreach (Feature it in scene.get_feature_list_noconst())
            {
                if (j < position_in_list)
                {
                    // new Pypiyj = dypi_by_dxv . Pxyj
                    // Size of this is FEATURE_STATE_SIZE(new) by FEATURE_STATE_SIZE(old)
                    MatrixFixed m = it.get_Pxy();
                    MatrixFixed newPyjypi_to_store = (Temp_FS1 * m).Transpose();

                    //add to the list
                    matrix_block_list.Add(newPyjypi_to_store);
                }
                j++;
            }

            known_feature_label = -1;
        }
Exemplo n.º 5
0
        /**************************Initialise Known Features**************************/

        /// <summary>
        /// Initialise the Scene_Single class with some known features, read from the
        /// Settings. Each known feature has its own section, starting with
        /// <code>[KnownFeature1]</code> and counting upwards. The feature type is
        /// identified with the entry <code>FeatureMeasurementModel=</code>. Further
        /// settings are loaded by the feature measurement model itself.
        /// </summary>
        /// <param name="model_creator"></param>
        /// <param name="sim_or_rob"></param>
        /// <param name="scene"></param>
        /// <returns></returns>
        public static uint initialise_known_features(Settings settings,
                                              Feature_Measurement_Model_Creator model_creator,
                                              Sim_Or_Rob sim_or_rob,
                                              Scene_Single scene,
                                              String path,
                                              float MAXIMUM_ANGLE_DIFFERENCE)
        {
            uint feature_no = 1;
            uint num_features = 0;
            Settings.Section section = null;

            do
            {
                // Step through the section names
                String section_name = "KnownFeature" + Convert.ToString(feature_no);
                section = settings.get_section(section_name);
                // Does this section exist?
                if (section == null)
                {
                    return num_features;
                }

                ArrayList values = section.get_entry("FeatureMeasurementModel");
                if (values == null)
                {
                    Debug.WriteLine("No FeatureMeasurementModel entry under the section [" +
                                    section_name + "] in initalisation file.");
                }
                else
                {
                    String type = (String)values[0];
                    Feature_Measurement_Model f_m_m =
                        model_creator.create_model(type, scene.get_motion_model(), MAXIMUM_ANGLE_DIFFERENCE);
                    if (f_m_m == null)
                    {
                        Debug.WriteLine("Unable to create a feature measurement model of type " +
                                        type + " as requested in initalisation file.");
                    }
                    else
                    {
                        // Initialise the feature measurement model with any settings
                        f_m_m.read_parameters(settings);
                        // Read the feature state
                        Vector yi = new Vector(3);
                        Vector xp_orig = new Vector(7);
                        f_m_m.read_initial_state(section, yi, xp_orig);

                        // Initialise the feature
                        byte[] identifier =
                            sim_or_rob.initialise_known_feature(f_m_m, yi, section, path);
                        if (identifier == null)
                        {
                            Debug.WriteLine("Trouble reading known feature " +
                                            section_name + " : skipping.");
                        }
                        else
                        {
                            scene.add_new_known_feature(identifier, yi, xp_orig, f_m_m, feature_no);
                            Debug.WriteLine("Added known feature " + Convert.ToString(feature_no));
                            num_features++;
                        }
                    }
                }
                feature_no++;
            }
            while (section != null);

            return num_features;
        }
Exemplo n.º 6
0
        /// <summary>
        /// Make measurements of all the currently-selected features. Features can be
        /// selected using Scene_Single::auto_select_n_features(), or manually using
        /// Scene_Single::select_feature(). This calls
        /// Scene_Single::starting_measurements() and then Sim_Or_Rob::measure_feature()
        /// for each selected feature. Each feature for which a measurement
        /// attempt is made has its Feature::attempted_measurements_of_feature and
        /// Feature::successful_measurements_of_feature counts updated.
        /// </summary>
        /// <param name="scene">The SLAM map to use</param>
        /// <param name="sim_or_rob">The class to use for measuring features.</param>
        /// <returns>The number of features successfully measured.</returns>
        public static int make_measurements(Scene_Single scene, 
		                                    Sim_Or_Rob sim_or_rob, 
		                                    Random rnd)
        {
            int count = 0;
            if (scene.get_no_selected() == 0)
            {
                Debug.WriteLine("No features selected.");
                return 0;
            }

            scene.starting_measurements();
            
            Feature it;
            Vector z;    //best position for the feature within the image
            for (int i = 0; i < scene.selected_feature_list.Count; i++)
            {
                it = (Feature)scene.selected_feature_list[i];

                z = it.get_z_noconst();                
                if (sim_or_rob.measure_feature(it.get_identifier(), ref z, it.get_vz(), it.get_h(), it.get_S(), rnd) == false)
                {
                    // couldn't locate the feature
                    scene.failed_measurement_of_feature(it);
                    it.update_velocity(false);
                }
                else
                {
                    // the feature was found!
                    scene.successful_measurement_of_feature(it);
                    it.update_velocity(true);
                    count++;
                }
            }             

            return count;
        }
Exemplo n.º 7
0
        /// <summary>
        /// Constructor
        /// </summary>
        /// <param name="initialisation_file">The initialisation file to read. This specifies the motion- and feature-measurement models to use, the initial state and known features.</param>
        /// <param name="mm_creator">The factory to use to create motion models.</param>
        /// <param name="fmm_creator">The factory to use to create feature measurement models</param>
        /// <param name="imm_creator">The factory to use to create internal measurement models</param>
        /// <param name="number_of_features_to_select">The number of features to select for measurement at each time step</param>
        /// <param name="number_of_features_to_keep_visible">The requried number of visible features. If fewer than this number are visible at any time step, the creation of a new feature is initiated</param>
        /// <param name="max_features_to_init_at_once"></param>
        /// <param name="min_lambda">The minimum distance from the camera (in metres) for a new feature</param>
        /// <param name="max_lambda">The maximum distance from the camera (in metres) for a new feature</param>
        /// <param name="number_of_particles">The number of particles to use for new features (distributed evenly in space between min_lambda and max_lambda)</param>
        /// <param name="standard_deviation_depth_ratio">The ratio between standard deviation and mean to use to identify when a partially-initialised feature should be converted to a fully-initialised one</param>
        /// <param name="min_number_of_particles">The minimum number of particles below which a partially-initalised feature is deleted</param>
        /// <param name="prune_probability_threshold">The threshold below which a particle with low probability is deleted</param>
        /// <param name="erase_partially_init_feature_after_this_many_attempts">The number of failed match attempts before a partially initialised feature is deleted.</param>
        public MonoSLAM(String initialisation_file,
                        String path,
                        Motion_Model_Creator mm_creator,
                        Feature_Measurement_Model_Creator fmm_creator,
                        Internal_Measurement_Model_Creator imm_creator,
                        uint number_of_features_to_select,
                        uint number_of_features_to_keep_visible,
                        uint max_features_to_init_at_once,
                        float min_lambda,
                        float max_lambda,
                        uint number_of_particles,
                        float standard_deviation_depth_ratio,
                        uint min_number_of_particles,
                        float prune_probability_threshold,
                        uint erase_partially_init_feature_after_this_many_attempts,
                        float MAXIMUM_ANGLE_DIFFERENCE,
                        float calibration_target_width_mm,
                        float calibration_target_height_mm,
                        float calibration_target_distance_mm)
        {
            PATH = path;
            NUMBER_OF_FEATURES_TO_SELECT = number_of_features_to_select;
            NUMBER_OF_FEATURES_TO_KEEP_VISIBLE = number_of_features_to_keep_visible;
            MAX_FEATURES_TO_INIT_AT_ONCE = max_features_to_init_at_once;
            MIN_LAMBDA = min_lambda;
            MAX_LAMBDA = max_lambda;
            NUMBER_OF_PARTICLES = number_of_particles;
            STANDARD_DEVIATION_DEPTH_RATIO = standard_deviation_depth_ratio;
            MIN_NUMBER_OF_PARTICLES = min_number_of_particles;
            PRUNE_PROBABILITY_THRESHOLD = prune_probability_threshold;
            ERASE_PARTIALLY_INIT_FEATURE_AFTER_THIS_MANY_ATTEMPTS = erase_partially_init_feature_after_this_many_attempts;
            number_of_visible_features = 0;
            number_of_matched_features = 0;
            
            Settings settings = new Settings();

            //if no file exists create some default values
            //if (!File.Exists(PATH + initialisation_file))
            {
                //create a settings file
                settings.createDefault(PATH + initialisation_file, calibration_target_width_mm, 
                                       calibration_target_height_mm, calibration_target_distance_mm);
                //settings.createDefault(PATH + initialisation_file, 210, 148.5, 600);
            }

            //create some known features
            //createDefaultKnownFeatures(PATH);
            

            // Create the Settings class by reading from the initialisation file
            if (File.Exists(PATH + initialisation_file))
            {
                StreamReader stream = File.OpenText(PATH + initialisation_file);
                settings.load(stream);

                // Create the Scene class. This also constructs the motion model and 
                // internal measurement models and sets the initial state
                scene = new Scene_Single(settings, mm_creator, imm_creator);

                // Now sort out the feature types
                ArrayList values = settings.get_entry("Models", "NewFeatureMeasurementModel");
                String feature_init_type = (String)values[0];
                Feature_Measurement_Model fm_model =
                    fmm_creator.create_model(feature_init_type, scene.get_motion_model(), MAXIMUM_ANGLE_DIFFERENCE);


                if (fm_model == null)
                {
                    Debug.WriteLine("Unable to create a feature measurement motion model of type " +
                                    feature_init_type + " as requested in initalisation file " +
                                    initialisation_file);
                }
                else
                {
                    // Initialise this motion model
                    fm_model.read_parameters(settings);

                    // Check that this is a partially-initialised feature type
                    if (fm_model.fully_initialised_flag)
                    {
                        Debug.WriteLine("Feature measurement motion model " + feature_init_type +
                                        " as requested in initalisation file " + initialisation_file +
                                        " is not a partially-initialised feature type. ");
                    }

                    default_feature_type_for_initialisation =
                        (Partially_Initialised_Feature_Measurement_Model)fm_model;

                    // We hope that features are viewed through a camera! If so,
                    // the feature measurement class should derive from
                    // Camera_Feature_Measurement_Model
                    // Note the multiple inherritance workaround
                    Camera_Feature_Measurement_Model cfmm =
                        (Camera_Feature_Measurement_Model)(fm_model.wide_model);

                    if (cfmm == null)
                    {
                        // Oops - the feature measurement model is not derived from
                        // Camera_Feature_Measurement_Model!                    
                        Debug.WriteLine("The default feature measurement motion model " +
                                        fm_model.feature_type +
                                        " is not derived from Camera_Feature_Measurement_Model!");
                    }
                    else
                    {

                        CAMERA_WIDTH = cfmm.get_camera().ImageWidth();
                        CAMERA_HEIGHT = cfmm.get_camera().ImageHeight();

                        kalman = new Kalman();
                        robot = new Robot();
                        sim_or_rob = (Sim_Or_Rob)robot;

                        // Initialise any known features
                        SceneLib.initialise_known_features(settings, fmm_creator, sim_or_rob, scene, PATH, MAXIMUM_ANGLE_DIFFERENCE);

                        // Various flags
                        init_feature_search_region_defined_flag = false;
                    }
                }

                stream.Close();
            }
            else
            {
                Debug.WriteLine("File not found:  " + initialisation_file);
            }
        }
Exemplo n.º 8
0
        //typedef Vector<Particle> as ParticleVector;

        /// <summary>
        /// Constructor. The class is intialised with no particles, so these must be added later using add_particle()
        /// </summary>
        /// <param name="sc">The Scene class.</param>
        /// <param name="f">The feature for which this class represents additional information.</param>
        public FeatureInitInfo(Scene_Single sc, Feature f)
        {
            scene = sc;
            fp = f;
            PARTICLE_DIMENSION = f.get_partially_initialised_feature_measurement_model().FREE_PARAMETER_SIZE;
            number_of_match_attempts = 0;
            nonzerovariance = false;

            mean = new Vector(PARTICLE_DIMENSION);
            covariance = new MatrixFixed(PARTICLE_DIMENSION, PARTICLE_DIMENSION);

            //if (Scene_Single::STATUSDUMP) cout << "PARTICLE_DIMENSION = " 
                                    //<< PARTICLE_DIMENSION << endl;
        }
Exemplo n.º 9
0
        // Function to find a region in an image guided by current motion prediction
        // which doesn't overlap existing features
        public static bool FindNonOverlappingRegion(Scene_Single scene,
                  Vector local_u,
                  float delta_t,
                  Partially_Initialised_Feature_Measurement_Model default_feature_type_for_initialisation,
                  uint camera_width,
                  uint camera_height,
                  uint BOXSIZE,
                  ref int init_feature_search_ustart,
                  ref int init_feature_search_vstart,
                  ref int init_feature_search_ufinish,
                  ref int init_feature_search_vfinish,
                  uint FEATURE_INIT_STEPS_TO_PREDICT,
                  float FEATURE_INIT_DEPTH_HYPOTHESIS,
                  Random rnd)
        {
            
            ThreeD_Motion_Model threed_motion_model = (ThreeD_Motion_Model)scene.get_motion_model();

            Vector local_xv = new Vector(scene.get_xv());
            
            for (uint i = 0; i < FEATURE_INIT_STEPS_TO_PREDICT; i++)
            {
                scene.get_motion_model().func_fv_and_dfv_by_dxv(local_xv, local_u, delta_t);
                local_xv.Update(scene.get_motion_model().get_fvRES());
            }
            
            threed_motion_model.func_xp(local_xv);
            Vector local_xp = new Vector(threed_motion_model.get_xpRES());

            threed_motion_model.func_r(local_xp);
            Vector3D rW = threed_motion_model.get_rRES();
            threed_motion_model.func_q(local_xp);
            Quaternion qWR = threed_motion_model.get_qRES();

            // yW =  rW + RWR hR
            Vector3D hR = new Vector3D(0.0f, 0.0f, FEATURE_INIT_DEPTH_HYPOTHESIS);

            // Used Inverse + transpose because this was't compiling the normal way
            Vector3D yW = new Vector3D(rW + qWR.RotationMatrix() * hR);

            // Then project that point into the current camera position
            scene.get_motion_model().func_xp(scene.get_xv());

            Fully_Initialised_Feature_Measurement_Model fully_init_fmm =
                (Fully_Initialised_Feature_Measurement_Model)(default_feature_type_for_initialisation.more_initialised_feature_measurement_model);


            Vector yWVNL = yW.GetVNL3();
            fully_init_fmm.func_hi_and_dhi_by_dxp_and_dhi_by_dyi(yWVNL, scene.get_motion_model().get_xpRES());

            // Now, this defines roughly how much we expect a feature initialised to move
            float suggested_u = fully_init_fmm.get_hiRES()[0];
            float suggested_v = fully_init_fmm.get_hiRES()[1];
            float predicted_motion_u = camera_width / 2.0f - suggested_u;
            float predicted_motion_v = camera_height / 2.0f - suggested_v;

            // So, the limits of a "safe" region within which we can initialise
            // features so that they end up staying within the screen
            // (Making the approximation that the whole screen moves like the 
            // centre point)
            int safe_feature_search_ustart = (int)(-predicted_motion_u);
            int safe_feature_search_vstart = (int)(-predicted_motion_v);
            int safe_feature_search_ufinish = (int)(camera_width - predicted_motion_u);
            int safe_feature_search_vfinish = (int)(camera_height - predicted_motion_v);

            if (safe_feature_search_ustart < ((int)((BOXSIZE - 1) / 2) + 1))
                safe_feature_search_ustart = (int)((BOXSIZE - 1) / 2 + 1);
            if (safe_feature_search_ufinish > (int)camera_width - ((int)((BOXSIZE - 1) / 2) + 1))
                safe_feature_search_ufinish = (int)(camera_width - (BOXSIZE - 1) / 2 - 1);
            if (safe_feature_search_vstart < ((int)((BOXSIZE - 1) / 2) + 1))
                safe_feature_search_vstart = (int)((BOXSIZE - 1) / 2 + 1);
            if (safe_feature_search_vfinish > (int)camera_height - ((int)((BOXSIZE - 1) / 2) + 1))
                safe_feature_search_vfinish = (int)(camera_height - (BOXSIZE - 1) / 2 - 1);

            return FindNonOverlappingRegionNoPredict(safe_feature_search_ustart,
                       safe_feature_search_vstart,
                       safe_feature_search_ufinish,
                       safe_feature_search_vfinish,
                       scene,
                       ref init_feature_search_ustart,
                       ref init_feature_search_vstart,
                       ref init_feature_search_ufinish,
                       ref init_feature_search_vfinish, rnd);
        }
Exemplo n.º 10
0
        /// <summary>
        /// Function to find non-overlapping region over without prediction 
        /// this is really the service function called by both the above
        /// </summary>
        /// <param name="safe_feature_search_ustart"></param>
        /// <param name="safe_feature_search_vstart"></param>
        /// <param name="safe_feature_search_ufinish"></param>
        /// <param name="safe_feature_search_vfinish"></param>
        /// <param name="scene"></param>
        /// <param name="init_feature_search_ustart"></param>
        /// <param name="init_feature_search_vstart"></param>
        /// <param name="init_feature_search_ufinish"></param>
        /// <param name="init_feature_search_vfinish"></param>
        /// <param name="rnd"></param>
        /// <returns></returns>
        public static bool FindNonOverlappingRegionNoPredict(
                       int safe_feature_search_ustart,
                       int safe_feature_search_vstart,
                       int safe_feature_search_ufinish,
                       int safe_feature_search_vfinish,
                       Scene_Single scene,
                       ref int init_feature_search_ustart,
                       ref int init_feature_search_vstart,
                       ref int init_feature_search_ufinish,
                       ref int init_feature_search_vfinish,
                       Random rnd)
        {
            int i, j;
            //if (Camera_Constants.DEBUGDUMP) cout << "FNOLRNP timer start: " << timerlocal << endl;

            int INIT_FEATURE_SEARCH_WIDTH = 80;
            int INIT_FEATURE_SEARCH_HEIGHT = 60;

            // Within this, choose a random region
            // Check that we've got some room for manouevre
            if ((safe_feature_search_ufinish - safe_feature_search_ustart > INIT_FEATURE_SEARCH_WIDTH) &&
                (safe_feature_search_vfinish - safe_feature_search_vstart > INIT_FEATURE_SEARCH_HEIGHT))
            {
                // Try a few times to get one that's not overlapping with any features
                // we know about
                int NUMBER_OF_RANDOM_INIT_FEATURE_SEARCH_REGION_TRIES = 5;
                int FEATURE_SEPARATION_MINIMUM = (int)Camera_Constants.BOXSIZE*3;

                // Build vectors of feature positions so we only have to work them out once
                ArrayList u_array = new ArrayList();
                ArrayList v_array = new ArrayList();

                Feature it;
                for (j = 0; j < scene.get_feature_list().Count; j++)
                {
                    it = (Feature)(scene.get_feature_list())[j];

                    //Vector z = it.get_z();
                    //u_array.Add(z[0]);
                    //v_array.Add(z[1]);


                    if (it.get_feature_measurement_model().fully_initialised_flag) 
                    {
                        //Vector z = it.get_z();
                        //u_array.Add(z[0]);
                        //v_array.Add(z[1]);

                        
	                    Fully_Initialised_Feature_Measurement_Model fifmm = 
	                        (Fully_Initialised_Feature_Measurement_Model)(it.get_feature_measurement_model());
	                    fifmm.func_hi_and_dhi_by_dxp_and_dhi_by_dyi(it.get_y(), scene.get_motion_model().get_xpRES());
	  	  
	                    // Check that this is not a feature behind the camera
                        if (it.get_feature_measurement_model().feature_graphics_type == "THREED_POINT") 
                        {	  
                            fifmm.func_zeroedyigraphics_and_Pzeroedyigraphics(it.get_y(),
							    scene.get_xv(), scene.get_Pxx(), it.get_Pxy(), it.get_Pyy());

	                        if (fifmm.get_zeroedyigraphicsRES()[2] > 0) 
                            {
	                            u_array.Add(fifmm.get_hiRES()[0]);
	                            v_array.Add(fifmm.get_hiRES()[1]);
                            }
                        } 
                        
                    }     
                }

                //if (Camera_Constants.DEBUGDUMP) cout << "FNOLRNP timer after functions: " << timerlocal << endl;
                
                bool feature_found = false;
                i = 0;
                while (i < NUMBER_OF_RANDOM_INIT_FEATURE_SEARCH_REGION_TRIES)
                {                    
                    int u_offset = (int)((safe_feature_search_ufinish - safe_feature_search_ustart 
                                          - INIT_FEATURE_SEARCH_WIDTH) * (rnd.Next(10000) / 10000.0f));
                    int v_offset = (int)((safe_feature_search_vfinish - safe_feature_search_vstart
                                          - INIT_FEATURE_SEARCH_HEIGHT) * (rnd.Next(10000) / 10000.0f));
      
                    init_feature_search_ustart = safe_feature_search_ustart + u_offset;
                    init_feature_search_ufinish = init_feature_search_ustart + INIT_FEATURE_SEARCH_WIDTH;
                    init_feature_search_vstart = safe_feature_search_vstart + v_offset;
                    init_feature_search_vfinish = init_feature_search_vstart + INIT_FEATURE_SEARCH_HEIGHT;

                    bool found_a_feature_in_region_flag = false;

                    // These arrays will be the same size                   
                    float uit, vit;
                    for (j = 0; j < u_array.Count; j++)
                    {
                        uit = (float)u_array[j];
                        vit = (float)v_array[j];

                        if ((uit >= init_feature_search_ustart - FEATURE_SEPARATION_MINIMUM) &&
                            (uit < init_feature_search_ufinish + FEATURE_SEPARATION_MINIMUM) &&
                            (vit >= init_feature_search_vstart - FEATURE_SEPARATION_MINIMUM) &&
                            (vit < init_feature_search_vfinish + FEATURE_SEPARATION_MINIMUM))
                        {
                            found_a_feature_in_region_flag = true;
                            feature_found = true;
	                        break;
	                    }
                    }

                    if (!found_a_feature_in_region_flag) break;
      
                    i++;
                }

                if (!feature_found) 
                {
                    return false;
                }

            }
            else 
            {
                return false;
            }

            return true;
        }
Exemplo n.º 11
0
        // Function to find non-overlapping region within whole image (no prediction)
        public static bool FindNonOverlappingRegionWholeImage(Scene_Single scene,
                    uint camera_width,
                    uint camera_height,
                    uint BOXSIZE,
                    ref int init_feature_search_ustart,
                    ref int init_feature_search_vstart,
                    ref int init_feature_search_ufinish,
                    ref int init_feature_search_vfinish, 
                    Random rnd)
        {
            int safe_feature_search_ustart = (int)((BOXSIZE - 1) / 2 + 1);
            int safe_feature_search_ufinish = (int)(camera_width - (BOXSIZE - 1) / 2 - 1);
            int safe_feature_search_vstart = (int)((BOXSIZE - 1) / 2 + 1);
            int safe_feature_search_vfinish = (int)(camera_height - (BOXSIZE - 1) / 2 - 1);

            return FindNonOverlappingRegionNoPredict(safe_feature_search_ustart,
                       safe_feature_search_vstart,
                       safe_feature_search_ufinish,
                       safe_feature_search_vfinish,
                       scene,
                       ref init_feature_search_ustart,
                       ref init_feature_search_vstart,
                       ref init_feature_search_ufinish,
                       ref init_feature_search_vfinish, rnd);
        }
Exemplo n.º 12
0
        public void update_filter_internal_measurement_slow(Scene_Single scene, uint i)
        {
            // Size of measurement vector
            uint size = ((Internal_Measurement)(scene.internal_measurement_vector[(int)i])).get_internal_measurement_model().MEASUREMENT_SIZE;

            uint size2 = scene.get_total_state_size();   // Size of state vector

            Vector x = new Vector(size2);
            MatrixFixed P = new MatrixFixed(size2, size2);

            scene.construct_total_state_and_covariance(ref x, ref P);

            // cout << "x:" << x;
            // cout << "P:" << P;

            // 1. Form nu and dh_by_dx 
            Vector nu_tot = new Vector(size);
            MatrixFixed dh_by_dx_tot = new MatrixFixed(size, size2);
            MatrixFixed R_tot = new MatrixFixed(size, size);

            scene.construct_total_internal_measurement_stuff(nu_tot, dh_by_dx_tot, R_tot, i);

            // 2. Calculate S(k+1) 
            MatrixFixed S = new MatrixFixed(size, size);

            //MatrixFixed Tempss2 = new MatrixFixed(size, size2);
            //MatrixFixed Temps2s = new MatrixFixed(size2, size);

            MatrixFixed dh_by_dx_totT = dh_by_dx_tot.Transpose();

            S.Update(dh_by_dx_tot * P * dh_by_dx_totT);
            S += R_tot;

            // cout << "R_tot:" << R_tot;
            //  cout << "S:" << S;
            // cout << "dh_by_dx_tot:" << dh_by_dx_tot;
            // cout << "dh_by_dx_totT:" << dh_by_dx_totT;

            // 3. Calculate W(k+1) 
            Cholesky S_cholesky = new Cholesky(S);
            MatrixFixed W = P * dh_by_dx_totT * S_cholesky.Inverse();

            // cout << "W:" << W;

            // 4. Calculate x(k+1|k+1) 
            x += W * nu_tot;

            // 5. Calculate P(k+1|k+1) 
            P -= W * S * W.Transpose();

            scene.fill_state_and_covariance(x, P);

            // cout << "x after update:" << x;
            // cout << "P after update:" << P;
        }
Exemplo n.º 13
0
        /// <summary>
        /// Update the filter in a simple overall way 
        /// </summary>
        /// <param name="scene"></param>
        public void total_update_filter_slow(Scene_Single scene)
        {
            // Steps to update the total filter:     
            // 1. Form h and dh_by_dx and R(k+1) and z
            // 2. Calculate S(k+1)
            // 3. Calculate W(k+1)
            // 4. Calculate x(k+1|k+1)
            // 5. Calculate P(k+1|k+1)

            uint size = scene.get_successful_measurement_vector_size(); // Size of measurement vector
                                                  
            uint size2 = scene.get_total_state_size();                  // Size of state vector

            Vector x = new Vector(size2);
            MatrixFixed P = new MatrixFixed(size2, size2);

            scene.construct_total_state_and_covariance(ref x, ref P);

            // 1. Form nu and dh_by_dx 
            Vector nu_tot = new Vector(size);
            MatrixFixed dh_by_dx_tot = new MatrixFixed(size, size2);
            MatrixFixed R_tot = new MatrixFixed(size, size);

            scene.construct_total_measurement_stuff(nu_tot, dh_by_dx_tot, R_tot);

            // 2. Calculate S(k+1)
            MatrixFixed temp_matrix = P * dh_by_dx_tot.Transpose();  //pre-calculate to speed up subsequent stuff
            MatrixFixed S = dh_by_dx_tot * temp_matrix;
            S += R_tot;

            // 3. Calculate W(k+1) 
            Cholesky S_cholesky = new Cholesky(S);

            MatrixFixed W = temp_matrix * S_cholesky.Inverse();

            // 4. Calculate x(k+1|k+1) 
            x += W * nu_tot;

            // 5. Calculate P(k+1|k+1) 
            P -= W * S * W.Transpose();

            scene.fill_state_and_covariance(x, P);

        }
Exemplo n.º 14
0
        /// <summary>
        /// Fast version of predict filter
        /// </summary>
        /// <param name="scene"></param>
        /// <param name="u">Control vector of accelerations</param>
        /// <param name="delta_t">time step in seconds</param>
        public void predict_filter_fast(Scene_Single scene, Vector u, float delta_t)
        {
            Vector xv = scene.get_xv();

            // Make model calculations: results are stored in RES matrices
            scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t);
            scene.get_motion_model().func_Q(xv, u, delta_t);

            Vector fvRES = scene.get_motion_model().get_fvRES();
            xv.Update(fvRES);

            Motion_Model mm = scene.get_motion_model();
            MatrixFixed Pxx = scene.get_Pxx();
            MatrixFixed dfv_by_dxvRES = mm.get_dfv_by_dxvRES();
            MatrixFixed dfv_by_dxvRES_transposed = dfv_by_dxvRES.Transpose();
            MatrixFixed QxRES = mm.get_QxRES();
            
            Pxx.Update((dfv_by_dxvRES * Pxx * dfv_by_dxvRES_transposed) + QxRES);
                      
            // Change the covariances between vehicle state and feature states 
            foreach (Feature it in scene.feature_list)
            {
                MatrixFixed Pxy = it.get_Pxy();
                Pxy.Update(dfv_by_dxvRES * Pxy);
            }            
            
        }