Exemplo n.º 1
0
        public static ReductionResult RunTest(Graph graph)
        {
            var result = new ReductionResult();

            List<int> bottlenecks = new List<int>();
            for (int i = 0; i < graph.Terminals.Count; i++)
            {
                var pathToAll = Algorithms.DijkstraPathToAll(graph.Terminals[i], graph);
                // Only add the maximum bottleneck of all paths
                bottlenecks.Add(pathToAll.SelectMany(x => x.Value.Edges).Max(e => e.Cost));
            }

            int B = bottlenecks.Max();

            List<Edge> redundant = new List<Edge>();
            foreach (var edge in graph.Edges.Where(edge => edge.Cost > B))
                redundant.Add(edge);

            foreach (var edge in redundant)
            {
                graph.RemoveEdge(edge);
                result.RemovedEdges.Add(edge);
            }

            return result;
        }
Exemplo n.º 2
0
        public static ReductionResult RunTest(Graph graph)
        {
            var result = new ReductionResult();

            var mst = Algorithms.Kruskal(graph.TerminalDistanceGraph);
            var S = mst.Edges.Max(edge => edge.Cost);
            foreach (var edge in graph.Edges.Where(e => e.Cost > S).ToList())
            {
                graph.RemoveEdge(edge);
                result.RemovedEdges.Add(edge);
            }

            return result;
        }
Exemplo n.º 3
0
        public static ReductionResult RunTest(Graph graph, int upperBound)
        {
            var result = new ReductionResult();

            // T. Polzin, lemma 25: Vertex removal
            int reductionBound = 0;
            int allRadiusesExceptTwoMostExpensive = graph.Terminals.Select(graph.GetVoronoiRadiusForTerminal).OrderBy(x => x).Take(graph.Terminals.Count - 2).Sum();
            HashSet<Vertex> removeVertices = new HashSet<Vertex>();
            foreach (var vertex in graph.Vertices.Except(graph.Required))
            {
                var nearestTerminals = Algorithms.NearestTerminals(vertex, graph, 2);
                int lowerBound = nearestTerminals.Sum(x => x.TotalCost) + allRadiusesExceptTwoMostExpensive;

                if (lowerBound > upperBound)
                    removeVertices.Add(vertex);
                else if (lowerBound > reductionBound)
                    reductionBound = lowerBound;
            }

            foreach (var removeVertex in removeVertices)
            {
                graph.RemoveVertex(removeVertex);
                result.RemovedVertices.Add(removeVertex);
            }

            // Check for disconnected components (and remove those that not contain any terminals)
            var componentTable = graph.CreateComponentTable();
            var terminalComponents = new HashSet<int>();
            foreach (var vertex in graph.Terminals)
                terminalComponents.Add(componentTable[vertex]);

            foreach (var vertex in graph.Vertices.Where(x => !terminalComponents.Contains(componentTable[x])).ToList())
            {
                graph.RemoveVertex(vertex);
                result.RemovedVertices.Add(vertex);
            }

            // T. Polzin, lemma 26: edge removal
            allRadiusesExceptTwoMostExpensive = graph.Terminals.Select(graph.GetVoronoiRadiusForTerminal).OrderBy(x => x).Take(graph.Terminals.Count - 2).Sum();
            HashSet<Edge> removeEdges = new HashSet<Edge>();
            Dictionary<Vertex, int> distancesToBase = new Dictionary<Vertex, int>();
            foreach (var terminal in graph.Terminals)
            {
                var toAll = Algorithms.DijkstraToAll(terminal, graph);
                foreach (var vertex in graph.Vertices)
                {
                    if (vertex == terminal)
                        continue;

                    if (!distancesToBase.ContainsKey(vertex))
                        distancesToBase.Add(vertex, toAll[vertex]);
                    else if (toAll[vertex] < distancesToBase[vertex])
                        distancesToBase[vertex] = toAll[vertex];
                }
            }

            foreach (var edge in graph.Edges)
            {
                var v1 = edge.Either();
                var v2 = edge.Other(v1);

                if (graph.Terminals.Contains(v1) || graph.Terminals.Contains(v2))
                    continue;

                var v1z1 = distancesToBase[v1];
                var v2z2 = distancesToBase[v2];
                var lowerBound = edge.Cost + v1z1 + v2z2 + allRadiusesExceptTwoMostExpensive;

                if (lowerBound > upperBound)
                    removeEdges.Add(edge);
                else if (lowerBound > reductionBound)
                    reductionBound = lowerBound;
            }

            foreach (var removeEdge in removeEdges)
            {
                graph.RemoveEdge(removeEdge);
                result.RemovedEdges.Add(removeEdge);
            }

            result.ReductionUpperBound = reductionBound;
            return result;
        }
Exemplo n.º 4
0
        /// <summary>
        /// Runs an approximation of the Special Distance Test to reduce the graph.
        /// This test runs much faster and offers only a small difference in performance.
        /// </summary>
        /// <param name="graph">The graph on which to run the test.</param>
        /// <returns>The reduced graph.</returns>
        public static ReductionResult RunTest(Graph graph)
        {
            if (!graph.Terminals.All(graph.ContainsVertex))
                Debugger.Break();

            var tmst = Algorithms.Kruskal(graph.TerminalDistanceGraph);
            var terminalSpecialDistances = new MultiDictionary<Vertex, int>();
            for (int i = 0; i < graph.Terminals.Count - 1; i++)
            {
                var tFrom = graph.Terminals[i];
                var toAll = Algorithms.DijkstraPathToAll(tFrom, tmst);
                for (int j = i + 1; j < graph.Terminals.Count; j++)
                {
                    var tTo = graph.Terminals[j];
                    var path = toAll[tTo];
                    var sd = path.Edges.Max(x => x.Cost);
                    terminalSpecialDistances.Add(tFrom, tTo, sd);
                }
            }

            var result = new ReductionResult();

            // Find all special distances between terminals
            int count = 0;
            int e = graph.NumberOfEdges;

            Dictionary<Vertex, Path> nearest = new Dictionary<Vertex, Path>();
            HashSet<Edge> remove = new HashSet<Edge>();

            int edgesWithoutRemoval = 0;

            foreach (var edge in graph.Edges.OrderByDescending(x => x.Cost))
            {
                count++;
                var vFrom = edge.Either();
                var vTo = edge.Other(vFrom);

                int SDEstimate = int.MaxValue;
                Path pathToNearestFrom = null;
                if (nearest.ContainsKey(vFrom))
                    pathToNearestFrom = nearest[vFrom];
                else
                {
                    pathToNearestFrom = Algorithms.NearestTerminal(vFrom, graph);
                    nearest.Add(vFrom, pathToNearestFrom);
                }
                var aNearestTerminalFrom = pathToNearestFrom.End;

                Path pathToNearestTo = null;
                if (nearest.ContainsKey(vTo))
                    pathToNearestTo = nearest[vTo];
                else
                {
                    pathToNearestTo = Algorithms.NearestTerminal(vTo, graph);
                    nearest.Add(vTo, pathToNearestTo);
                }
                var bNearestTerminalTo = pathToNearestTo.End;

                // SD = Max( dist(v, z_a), dist(w, z_b), sd(z_a, z_b) )
                var sd = Math.Max(pathToNearestFrom.TotalCost, pathToNearestTo.TotalCost);
                if (aNearestTerminalFrom != bNearestTerminalTo)
                {
                    var sdTerminals = terminalSpecialDistances[aNearestTerminalFrom, bNearestTerminalTo];
                    sd = Math.Max(sd, sdTerminals);
                }

                if (sd < SDEstimate)
                    SDEstimate = sd;

                if (edge.Cost > SDEstimate)
                {
                    edgesWithoutRemoval = 0;
                    remove.Add(edge);
                }
                else if (++edgesWithoutRemoval >= graph.NumberOfEdges / 100) // Expecting a 1% reduction
                {
                    break;
                }
            }

            foreach (var edge in remove)
            {
                graph.RemoveEdge(edge);
                result.RemovedEdges.Add(edge);
            }

            return result;
        }
Exemplo n.º 5
0
Arquivo: BLS.cs Projeto: MadMatt25/STP
        private void AddEdgesToMST(Graph mst, List<Edge> edges)
        {
            foreach (var edge in edges)
            {
                if (edge.WhereBoth(x => mst.GetDegree(x) > 0)) //Both vertices of this edge are in the MST, introducing this edge creates cycle!
                {
                    var v1 = edge.Either();
                    var v2 = edge.Other(v1);
                    var components = mst.CreateComponentTable();

                    if (components[v1] == components[v2])
                    {
                        // Both are in the same component, and a path exists.
                        // Travel the path to see if adding this edge makes it cheaper
                        var path = Algorithms.DijkstraPath(v1, v2, mst);

                        // However, we can remove a set of edges between two nodes
                        // When going from T1 to T3
                        // E.g.: T1 - v2 - v3 - v4 - T2 - v5 - v6 - T3
                        // The edges between T1, v2, v3, v4, T2 cost more than the path between T1 and T3.
                        // Removing those edges, and adding the new edge from T1 to T3, also connects
                        // T1 to T2, so still a tree!
                        var from = path.Start;
                        var last = path.Start;
                        int betweenTerminals = 0;
                        var subtractedPath = new Path(path.Start);
                        List<Edge> edgesInSubtraction = new List<Edge>();
                        Dictionary<Edge, List<Edge>> subtractions = new Dictionary<Edge, List<Edge>>();
                        for (int i = 0; i < path.Edges.Count; i++)
                        {
                            var pe = path.Edges[i];
                            betweenTerminals += pe.Cost;
                            last = pe.Other(last);
                            edgesInSubtraction.Add(pe);
                            if (mst.GetDegree(last) > 2 || mst.Terminals.Contains(last) || i == path.Edges.Count - 1)
                            {
                                var subtractedEdge = new Edge(from, last, betweenTerminals);
                                subtractions.Add(subtractedEdge, edgesInSubtraction);
                                edgesInSubtraction = new List<Edge>();
                                subtractedPath.Edges.Add(subtractedEdge);
                                from = last;
                                betweenTerminals = 0;
                            }
                        }

                        var mostCostly = subtractedPath.Edges[0];
                        for (int i = 1; i < subtractedPath.Edges.Count; i++)
                        {
                            if (subtractedPath.Edges[i].Cost > mostCostly.Cost)
                                mostCostly = subtractedPath.Edges[i];
                        }

                        if (mostCostly.Cost >= edge.Cost)
                        {
                            foreach (var e in subtractions[mostCostly])
                                mst.RemoveEdge(e, false);
                            mst.AddEdge(edge);
                        }
                    }
                    else // Connect the two disconnected components!
                        mst.AddEdge(edge);
                }
                else
                    mst.AddEdge(edge);
            }
        }
Exemplo n.º 6
0
        /// <summary>
        /// Runs the Special Distance Test to reduce the graph.
        /// </summary>
        /// <param name="graph">The graph on which to run the test.</param>
        /// <returns>The reduced graph.</returns>
        public static ReductionResult RunTest(Graph graph)
        {
            List<Edge> redundant = new List<Edge>();
            var result = new ReductionResult();

            var distanceGraph = graph.CreateDistanceGraph();
            var specialDistanceGraph = CreateInitialSpecialDistanceGraph(graph);
            for (int i = 0; i < graph.NumberOfVertices; i++)
            {
                Console.Write("SD Test: {0}/{1}   \r", i, graph.NumberOfVertices);
                // Step 1. L := { i }
                //         for all j set delta_j = d_ij
                // In each iteration, delta_j means the current special distance from the start vertex to j.
                var vFrom = graph.Vertices[i];
                List<Vertex> L = new List<Vertex>(new [] { vFrom }); // Initially only the start veretx is labeled.
                // Initially set special distance equal to distance
                foreach (var edge in specialDistanceGraph.GetEdgesForVertex(vFrom))
                {
                    edge.Cost =
                        distanceGraph.GetEdgesForVertex(vFrom).Single(x => x.Other(vFrom) == edge.Other(vFrom)).Cost;
                    //edge.Cost = Math.Min(edge.Cost,
                    //    distanceGraph.GetEdgesForVertex(vFrom).Single(x => x.Other(vFrom) == edge.Other(vFrom)).Cost);
                }

                List<Vertex> unhandledTerminals = null; // K \ L
                while ((unhandledTerminals = graph.Terminals.Where(x => !L.Contains(x)).ToList()).Count > 0)
                { // While K \ L is not empty
                    // Find the terminal which minimizes delta(j) for all j in K \ L
                    int currentMinimum = int.MaxValue;
                    Vertex k = null;
                    var edgesFrom = specialDistanceGraph.GetEdgesForVertex(vFrom);
                    foreach (var terminal in unhandledTerminals)
                    {
                        var deltaEdge = edgesFrom.First(x => x.Other(vFrom) == terminal);
                        if (deltaEdge.Cost < currentMinimum)
                        {
                            currentMinimum = deltaEdge.Cost;
                            k = terminal;
                        }
                    }

                    L.Add(k);

                    // Re-lable all vertices that haven't gotten a definitive label yet.
                    var delta_k = edgesFrom.First(x => x.Other(vFrom) == k).Cost;
                    foreach (var unlabeled in graph.Vertices.Where(x => !L.Contains(x)))
                    {
                        var d_kj = distanceGraph.GetEdgesForVertex(k).First(x => x.Other(k) == unlabeled).Cost;
                        var deltaEdge = edgesFrom.First(x => x.Other(vFrom) == unlabeled);
                        deltaEdge.Cost = Math.Min(deltaEdge.Cost, Math.Max(delta_k, d_kj));
                    }
                }

                var specialEdges = specialDistanceGraph.GetEdgesForVertex(vFrom);
                var distanceEdges = distanceGraph.GetEdgesForVertex(vFrom);
                var edges = graph.GetEdgesForVertex(vFrom);
                foreach (var redundantEdge in specialEdges.Where(x => x.Cost < distanceEdges.First(y => y.Other(vFrom) == x.Other(vFrom)).Cost))
                {
                    // Special distance is smaller than distance. Edge is redundant.
                    var edge = edges.FirstOrDefault(x => x.Other(vFrom) == redundantEdge.Other(vFrom));
                    if (edge != null)
                        redundant.Add(edge);
                }
            }

            foreach (var edge in redundant)
            {
                graph.RemoveEdge(edge);
                result.RemovedEdges.Add(edge);
            }

            Console.Write("                                  \r");

            return result;
        }
Exemplo n.º 7
0
        public static Graph RunSolver(Graph graph)
        {
            var solution = new Graph(graph.Vertices);

            DijkstraState state = new DijkstraState();
            // Create the states needed for every execution of the Dijkstra algorithm
            foreach (var terminal in graph.Terminals)
                state.AddVertexToInterleavingDijkstra(terminal, graph);

            // Initialize
            Vertex currentVertex = state.GetNextVertex();
            FibonacciHeap<int, Vertex> labels = state.GetLabelsFibonacciHeap();
            HashSet<Vertex> visited = state.GetVisitedHashSet();
            Dictionary<Vertex, Path> paths = state.GetPathsFound();
            Dictionary<Vertex, FibonacciHeap<int, Vertex>.Node> nodes = state.GetNodeMapping();
            Dictionary<Vertex, Edge> comingFrom = state.GetComingFromDictionary();

            Dictionary<Vertex, int> components = solution.CreateComponentTable();
            Dictionary<Vertex, double> terminalFValues = CreateInitialFValuesTable(graph);

            int maxLoopsNeeded = graph.Terminals.Count * graph.NumberOfVertices;
            int loopsDone = 0;
            int updateInterval = 100;

            int longestPath = graph.Terminals.Max(x => Algorithms.DijkstraToAll(x, graph).Max(y => y.Value));

            while (state.GetLowestLabelVertex() != null)
            {
                if (loopsDone % updateInterval == 0)
                    Console.Write("\rRunning IDA... {0:0.0}%                           \r", 100.0 * loopsDone / maxLoopsNeeded);
                loopsDone++;

                if (state.GetLowestLabelVertex() != currentVertex)
                {
                    // Interleave. Switch to the Dijkstra procedure of the vertex which currently has the lowest distance.
                    state.SetLabelsFibonacciHeap(labels);
                    state.SetVisitedHashSet(visited);
                    state.SetPathsFound(paths);
                    state.SetComingFromDictionary(comingFrom);

                    currentVertex = state.GetNextVertex();
                    labels = state.GetLabelsFibonacciHeap();
                    visited = state.GetVisitedHashSet();
                    paths = state.GetPathsFound();
                    nodes = state.GetNodeMapping();
                    comingFrom = state.GetComingFromDictionary();
                }

                // Do one loop in Dijkstra algorithm
                var currentNode = labels.ExtractMin();
                var current = currentNode.Value;

                if (currentNode.Key > longestPath / 2)
                    break; //Travelled across the half of longest distance. No use in going further.

                // Consider all edges ending in unvisited neighbours
                var edges = graph.GetEdgesForVertex(current).Where(x => !visited.Contains(x.Other(current)));
                // Update labels on the other end
                foreach (var edge in edges)
                {
                    if (currentNode.Key + edge.Cost < nodes[edge.Other(current)].Key)
                    {
                        labels.DecreaseKey(nodes[edge.Other(current)], currentNode.Key + edge.Cost);
                        comingFrom[edge.Other(current)] = edge;
                    }
                }

                visited.Add(current);
                if (current != currentVertex)
                {
                    // Travel back the new path
                    List<Edge> pathEdges = new List<Edge>();
                    Vertex pathVertex = current;
                    while (pathVertex != currentVertex)
                    {
                        pathEdges.Add(comingFrom[pathVertex]);
                        pathVertex = comingFrom[pathVertex].Other(pathVertex);
                    }

                    pathEdges.Reverse();
                    Path path = new Path(currentVertex);
                    path.Edges.AddRange(pathEdges);
                    paths[current] = path;
                }

                // Find matching endpoints from two different terminals
                var mutualEnd = state.FindPathsEndingInThisVertex(current);
                if (mutualEnd.Count() > 1)
                {
                    var terminals = mutualEnd.Select(x => x.Start).ToList();

                    // Step 1. Calculate new heuristic function value for this shared point.
                    // f(x) = (Cost^2)/(NumberOfTerminals^3)
                    var f1 = Math.Pow(mutualEnd.Sum(p => p.TotalCost), 2) / Math.Pow(terminals.Count, 3);
                    var f2 = Math.Pow(mutualEnd.Sum(p => p.TotalCost), 1) / Math.Pow(terminals.Count, 2);
                    var f3 = Math.Pow(mutualEnd.Sum(p => p.TotalCost), 3) / Math.Pow(terminals.Count, 2);
                    var terminalsAvgF = terminals.Select(x => terminalFValues[x]).Average();
                    var terminalsMinF = terminals.Select(x => terminalFValues[x]).Min();
                    var f = (new[] { f1, f2, f3 }).Max();
                    Debug.WriteLine("F value: {0}, Fmin: {3} - Connecting terminals: {1} via {2}", f, string.Join(", ", terminals.Select(x => x.VertexName)), current.VertexName, terminalsMinF);

                    // Do not proceed if f > avgF AND working in same component
                    if (terminals.Select(x => components[x]).Distinct().Count() == 1 && f > terminalsMinF)
                        continue;

                    Debug.WriteLine("Proceeding with connection...");

                    // Step 2. Disconnect terminals in mutual component.
                    foreach (var group in terminals.GroupBy(x => components[x]))
                    {
                        if (group.Count() <= 1)
                            continue;

                        HashSet<Edge> remove = new HashSet<Edge>();
                        var sameComponentTerminals = group.ToList();
                        for (int i = 0; i < sameComponentTerminals.Count-1; i++)
                        {
                            for (int j = i+1; j< sameComponentTerminals.Count; j++)
                            {
                                var removePath = Algorithms.DijkstraPath(sameComponentTerminals[i], sameComponentTerminals[j], solution);
                                foreach (var e in removePath.Edges)
                                    remove.Add(e);
                            }
                        }

                        foreach (var e in remove)
                            solution.RemoveEdge(e, false);
                    }

                    components = solution.CreateComponentTable();

                    // Step 3. Reconnect all now disconnected terminals via shared endpoint
                    foreach (var t in terminals)
                    {
                        var path = Algorithms.DijkstraPath(t, current, graph);
                        foreach (var edge in path.Edges)
                            solution.AddEdge(edge);
                        // Update f value
                        terminalFValues[t] = f;
                    }

                    components = solution.CreateComponentTable();
                }
            }

            // If this solution is connected, take MST
            if (graph.Terminals.Select(x => components[x]).Distinct().Count() == 1)
            {
                // Clean up!
                foreach (var vertex in solution.Vertices.Where(x => solution.GetDegree(x) == 0).ToList())
                    solution.RemoveVertex(vertex);

                int componentNumber = graph.Terminals.Select(x => components[x]).Distinct().Single();
                foreach (var vertex in components.Where(x => x.Value != componentNumber).Select(x => x.Key).ToList())
                    solution.RemoveVertex(vertex);

                solution = Algorithms.Kruskal(solution);
                return solution;
            }

            // If the solution is not connected, it is not a good solution.
            return null;
        }