Exemplo n.º 1
0
        public static void PlanarDLT(Matrix cameraMatrix, Matrix distCoeffs, List <Matrix> worldPoints, List <System.Drawing.PointF> imagePoints, out Matrix R, out Matrix t)
        {
            int n = worldPoints.Count;
            var undistortedImagePoints = new List <System.Drawing.PointF>();

            for (int i = 0; i < n; i++)
            {
                var    imagePoint = imagePoints[i];
                double x, y;
                Undistort(cameraMatrix, distCoeffs, imagePoint.X, imagePoint.Y, out x, out y);
                var undistorted = new System.Drawing.PointF();
                undistorted.X = (float)x;
                undistorted.Y = (float)y;
                undistortedImagePoints.Add(undistorted);
            }

            var H = Homography(worldPoints, undistortedImagePoints);

            H.Scale(1.0 / H[2, 2]);

            //Console.WriteLine(H);

            var r1 = new Matrix(3, 1);

            r1.CopyCol(H, 0);

            var r2 = new Matrix(3, 1);

            r2.CopyCol(H, 1);

            t = new Matrix(3, 1);
            t.CopyCol(H, 2);
            t.Scale(1 / ((r1.Norm() + r2.Norm()) / 2.0));
            r1.Scale(1 / r1.Norm());
            r2.Scale(1 / r2.Norm());

            var r3 = new Matrix(3, 1);

            r3.Cross(r1, r2);

            R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
            {
                R[i, 0] = r1[i];
                R[i, 1] = r2[i];
                R[i, 2] = r3[i];
            }
        }
Exemplo n.º 2
0
        public static Matrix RotationMatrixFromRotationVector(Matrix rotationVector)
        {
            double angle = rotationVector.Norm();
            var    axis  = new SharpDX.Vector3((float)(rotationVector[0] / angle), (float)(rotationVector[1] / angle), (float)(rotationVector[2] / angle));

            // Why the negative sign? SharpDX returns a post-multiply matrix. Instead of transposing to get the pre-multiply matrix we just invert the input rotation.
            var sR = SharpDX.Matrix.RotationAxis(axis, -(float)angle);

            var R = new Matrix(3, 3);

            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    R[i, j] = sR[i, j];
                }
            }
            return(R);
        }
Exemplo n.º 3
0
 public static void Normalize(Matrix A, Matrix B)
 {
     B.Scale(A, 1.0 / A.Norm());
 }
Exemplo n.º 4
0
        public static Matrix RotationMatrixFromRotationVector(Matrix rotationVector)
        {
            double angle = rotationVector.Norm();
            var axis = new SharpDX.Vector3((float)(rotationVector[0] / angle), (float)(rotationVector[1] / angle), (float)(rotationVector[2] / angle));

            // Why the negative sign? SharpDX returns a post-multiply matrix. Instead of transposing to get the pre-multiply matrix we just invert the input rotation.
            var sR = SharpDX.Matrix.RotationAxis(axis, -(float)angle);

            var R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    R[i, j] = sR[i, j];
            return R;
        }
Exemplo n.º 5
0
        // Use DLT to obtain estimate of calibration rig pose; in our case this is the pose of the Kinect camera.
        // This pose estimate will provide a good initial estimate for subsequent projector calibration.
        // Note for a full PnP solution we should probably refine with Levenberg-Marquardt.
        // DLT is described in Hartley and Zisserman p. 178
        public static void DLT(Matrix cameraMatrix, Matrix distCoeffs, List<Matrix> worldPoints, List<System.Drawing.PointF> imagePoints, out Matrix R, out Matrix t)
        {
            int n = worldPoints.Count;

            var A = Matrix.Zero(2 * n, 12);

            for (int j = 0; j < n; j++)
            {
                var X = worldPoints[j];
                var imagePoint = imagePoints[j];

                double x, y;
                Undistort(cameraMatrix, distCoeffs, imagePoint.X, imagePoint.Y, out x, out y);

                int ii = 2 * j;
                A[ii, 4] = -X[0];
                A[ii, 5] = -X[1];
                A[ii, 6] = -X[2];
                A[ii, 7] = -1;

                A[ii, 8] = y * X[0];
                A[ii, 9] = y * X[1];
                A[ii, 10] = y * X[2];
                A[ii, 11] = y;

                ii++; // next row
                A[ii, 0] = X[0];
                A[ii, 1] = X[1];
                A[ii, 2] = X[2];
                A[ii, 3] = 1;

                A[ii, 8] = -x * X[0];
                A[ii, 9] = -x * X[1];
                A[ii, 10] = -x * X[2];
                A[ii, 11] = -x;
            }

            // Pcolumn is the eigenvector of ATA with the smallest eignvalue
            var Pcolumn = new Matrix(12, 1);
            {
                var ATA = new Matrix(12, 12);
                ATA.MultATA(A, A);

                var V = new Matrix(12, 12);
                var ww = new Matrix(12, 1);
                ATA.Eig(V, ww);

                Pcolumn.CopyCol(V, 0);
            }

            // reshape into 3x4 projection matrix
            var P = new Matrix(3, 4);
            P.Reshape(Pcolumn);

            R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    R[i, j] = P[i, j];

            if (R.Det3x3() < 0)
            {
                R.Scale(-1);
                P.Scale(-1);
            }

            // orthogonalize R
            {
                var U = new Matrix(3, 3);
                var V = new Matrix(3, 3);
                var ww = new Matrix(3, 1);
                R.SVD(U, ww, V);
                R.MultAAT(U, V);
            }

            // determine scale factor
            var RP = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    RP[i, j] = P[i, j];
            double s = RP.Norm() / R.Norm();

            t = new Matrix(3, 1);
            for (int i = 0; i < 3; i++)
                t[i] = P[i, 3];
            t.Scale(1.0 / s);
        }
Exemplo n.º 6
0
        public static void PlanarDLT(Matrix cameraMatrix, Matrix distCoeffs, List<Matrix> worldPoints, List<System.Drawing.PointF> imagePoints, out Matrix R, out Matrix t)
        {
            int n = worldPoints.Count;
            var undistortedImagePoints = new List<System.Drawing.PointF>();
            for (int i = 0; i < n; i++)
            {
                var imagePoint = imagePoints[i];
                double x, y;
                Undistort(cameraMatrix, distCoeffs, imagePoint.X, imagePoint.Y, out x, out y);
                var undistorted = new System.Drawing.PointF();
                undistorted.X = (float)x;
                undistorted.Y = (float)y;
                undistortedImagePoints.Add(undistorted);
            }

            var H = Homography(worldPoints, undistortedImagePoints);
            H.Scale(1.0 / H[2, 2]);

            //Console.WriteLine(H);

            var r1 = new Matrix(3, 1);
            r1.CopyCol(H, 0);

            var r2 = new Matrix(3, 1);
            r2.CopyCol(H, 1);

            t = new Matrix(3, 1);
            t.CopyCol(H, 2);
            t.Scale(1 / ((r1.Norm() + r2.Norm()) / 2.0));
            r1.Scale(1 / r1.Norm());
            r2.Scale(1 / r2.Norm());

            var r3 = new Matrix(3, 1);
            r3.Cross(r1, r2);

            R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
            {
                R[i, 0] = r1[i];
                R[i, 1] = r2[i];
                R[i, 2] = r3[i];
            }
        }
Exemplo n.º 7
0
        // Use DLT to obtain estimate of calibration rig pose; in our case this is the pose of the Kinect camera.
        // This pose estimate will provide a good initial estimate for subsequent projector calibration.
        // Note for a full PnP solution we should probably refine with Levenberg-Marquardt.
        // DLT is described in Hartley and Zisserman p. 178
        public static void DLT(Matrix cameraMatrix, Matrix distCoeffs, List <Matrix> worldPoints, List <System.Drawing.PointF> imagePoints, out Matrix R, out Matrix t)
        {
            int n = worldPoints.Count;

            var A = Matrix.Zero(2 * n, 12);

            for (int j = 0; j < n; j++)
            {
                var X          = worldPoints[j];
                var imagePoint = imagePoints[j];

                double x, y;
                Undistort(cameraMatrix, distCoeffs, imagePoint.X, imagePoint.Y, out x, out y);

                int ii = 2 * j;
                A[ii, 4] = -X[0];
                A[ii, 5] = -X[1];
                A[ii, 6] = -X[2];
                A[ii, 7] = -1;

                A[ii, 8]  = y * X[0];
                A[ii, 9]  = y * X[1];
                A[ii, 10] = y * X[2];
                A[ii, 11] = y;

                ii++; // next row
                A[ii, 0] = X[0];
                A[ii, 1] = X[1];
                A[ii, 2] = X[2];
                A[ii, 3] = 1;

                A[ii, 8]  = -x * X[0];
                A[ii, 9]  = -x * X[1];
                A[ii, 10] = -x * X[2];
                A[ii, 11] = -x;
            }

            // Pcolumn is the eigenvector of ATA with the smallest eignvalue
            var Pcolumn = new Matrix(12, 1);
            {
                var ATA = new Matrix(12, 12);
                ATA.MultATA(A, A);

                var V  = new Matrix(12, 12);
                var ww = new Matrix(12, 1);
                ATA.Eig(V, ww);

                Pcolumn.CopyCol(V, 0);
            }

            // reshape into 3x4 projection matrix
            var P = new Matrix(3, 4);

            P.Reshape(Pcolumn);

            R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    R[i, j] = P[i, j];
                }
            }

            if (R.Det3x3() < 0)
            {
                R.Scale(-1);
                P.Scale(-1);
            }

            // orthogonalize R
            {
                var U  = new Matrix(3, 3);
                var V  = new Matrix(3, 3);
                var ww = new Matrix(3, 1);
                R.SVD(U, ww, V);
                R.MultAAT(U, V);
            }

            // determine scale factor
            var RP = new Matrix(3, 3);

            for (int i = 0; i < 3; i++)
            {
                for (int j = 0; j < 3; j++)
                {
                    RP[i, j] = P[i, j];
                }
            }
            double s = RP.Norm() / R.Norm();

            t = new Matrix(3, 1);
            for (int i = 0; i < 3; i++)
            {
                t[i] = P[i, 3];
            }
            t.Scale(1.0 / s);
        }
Exemplo n.º 8
0
		public static void Normalize(Matrix A, Matrix B)		
		{
			B.Scale(A, 1.0/A.Norm());
		}
Exemplo n.º 9
0
        public static Matrix RotationMatrixFromRotationVector(Matrix rotationVector)
        {
            double angle = rotationVector.Norm();
            var axis = new SharpDX.Vector3((float)(rotationVector[0] / angle), (float)(rotationVector[1] / angle), (float)(rotationVector[2] / angle));
            var sR = SharpDX.Matrix.RotationAxis(axis, -(float)angle); // TODO: why sign?

            var R = new Matrix(3, 3);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    R[i, j] = sR[i, j];
            return R;
        }