Exemplo n.º 1
0
 public void LaplaceRelaxation(TopoModel model)
 {
     double n = 2;
     RHVector3 newPos = new RHVector3(pos);
     newPos.AddInternal(pos);
     foreach (TopoTriangle t in connectedFacesList)
     {
         int idx = t.VertexIndexFor(this);
         n += 2;
         newPos.AddInternal(t.vertices[(idx + 1) % 3].pos);
         newPos.AddInternal(t.vertices[(idx + 2) % 3].pos);
     }
     newPos.Scale(1.0 / n);
     // validate newPos does not create intersecting triangles or bad shapes
     foreach (TopoTriangle t in connectedFacesList)
     {
         int idx = t.VertexIndexFor(this);
         RHVector3 d1 = t.vertices[(idx+1)%3].pos.Subtract(newPos);
         RHVector3 d2 = t.vertices[(idx+2)%3].pos.Subtract(t.vertices[(idx+1)%3].pos);
         RHVector3 normal = d1.CrossProduct(d2);
         if (normal.ScalarProduct(t.normal) < 0)
             return;
         double angle = t.AngleEdgePoint((idx + 1) % 3, newPos);
         if(angle < 0.088 || angle > 2.96)
             return; // Angle gets to small
     }
     model.vertices.ChangeCoordinates(this, newPos);
 }
Exemplo n.º 2
0
        public void LaplaceRelaxation(TopoModel model)
        {
            double    n      = 2;
            RHVector3 newPos = new RHVector3(pos);

            newPos.AddInternal(pos);
            foreach (TopoTriangle t in connectedFacesList)
            {
                int idx = t.VertexIndexFor(this);
                n += 2;
                newPos.AddInternal(t.vertices[(idx + 1) % 3].pos);
                newPos.AddInternal(t.vertices[(idx + 2) % 3].pos);
            }
            newPos.Scale(1.0 / n);
            // validate newPos does not create intersecting triangles or bad shapes
            foreach (TopoTriangle t in connectedFacesList)
            {
                int       idx    = t.VertexIndexFor(this);
                RHVector3 d1     = t.vertices[(idx + 1) % 3].pos.Subtract(newPos);
                RHVector3 d2     = t.vertices[(idx + 2) % 3].pos.Subtract(t.vertices[(idx + 1) % 3].pos);
                RHVector3 normal = d1.CrossProduct(d2);
                if (normal.ScalarProduct(t.normal) < 0)
                {
                    return;
                }
                double angle = t.AngleEdgePoint((idx + 1) % 3, newPos);
                if (angle < 0.088 || angle > 2.96)
                {
                    return; // Angle gets to small
                }
            }
            model.vertices.ChangeCoordinates(this, newPos);
        }
Exemplo n.º 3
0
        public void FlipDirection()
        {
            normal.Scale(-1);
            TopoVertex v = vertices[0];

            vertices[0] = vertices[1];
            vertices[1] = v;
            TopoEdge e = edges[1];

            edges[1] = edges[2];
            edges[2] = e;
        }
Exemplo n.º 4
0
        public bool SmoothAspectRatio(TopoModel model, double maxRatio)
        {
            double maxLen, minLen;
            int    maxIdx, minIdx;

            LongestShortestEdgeLength(out maxIdx, out maxLen, out minIdx, out minLen);
            if (minLen == 0)
            {
                return(false);
            }
            if (maxLen > 1 && maxLen / minLen > maxRatio)
            {
                RHVector3 center = edges[maxIdx].v1.pos.Add(edges[maxIdx].v2.pos);
                center.Scale(0.5);
                TopoVertex newVertex = new TopoVertex(0, center);
                model.addVertex(newVertex);
                edges[maxIdx].InsertVertex(model, newVertex);
                return(true);
            }
            return(false);
        }
Exemplo n.º 5
0
 public void importSTL(string filename,double scale=1)
 {
     StartAction("L_LOADING...");
     clear();
     try
     {
         FileStream f = File.OpenRead(filename);
         byte[] header = new byte[80];
         ReadArray(f, header);
         /*   if (header[0] == 's' && header[1] == 'o' && header[2] == 'l' && header[3] == 'i' && header[4] == 'd')
            {
                f.Close();
                LoadText(file);
            }
            else
            {*/
         BinaryReader r = new BinaryReader(f);
         int nTri = r.ReadInt32();
         if (f.Length != 84 + nTri * 50)
         {
             f.Close();
             importSTLAscii(filename,scale);
         }
         else
         {
             for (int i = 0; i < nTri; i++)
             {
                 Progress((double)i / nTri);
                 if (i % 2000 == 0)
                 {
                     Application.DoEvents();
                     if(IsActionStopped()) return;
                 }
                 RHVector3 normal = new RHVector3(r.ReadSingle(), r.ReadSingle(), r.ReadSingle());
                 RHVector3 p1 = new RHVector3(r.ReadSingle(), r.ReadSingle(), r.ReadSingle());
                 RHVector3 p2 = new RHVector3(r.ReadSingle(), r.ReadSingle(), r.ReadSingle());
                 RHVector3 p3 = new RHVector3(r.ReadSingle(), r.ReadSingle(), r.ReadSingle());
                 p1.Scale(scale);
                 p2.Scale(scale);
                 p3.Scale(scale);
                 normal.NormalizeSafe();
                 addTriangle(p1, p2, p3, normal);
                 r.ReadUInt16();
             }
             r.Close();
             f.Close();
         }
     }
     catch (Exception e)
     {
         MessageBox.Show(e.ToString(), "Error reading STL file", MessageBoxButtons.OK, MessageBoxIcon.Error);
     }
 }
Exemplo n.º 6
0
        public bool import3Ds(string filename,double scale=1)
        {
            _3DSLoader loader = new _3DSLoader();
            _3DSLoader._3DScene scene = loader.Load(filename);
            if (scene.GetObjectCount() == 0) return false;
            foreach (_3DSLoader._3DObject obj in scene.GetObjects())
            {
                for (int index = 0; index < obj.GetFaceCount(); index++)
                {
                    _3DSLoader._3DFace face = obj.GetFace(index);
                    _3DSLoader._3DVertex vertex;

                    vertex = obj.GetVertex(face.Vertex1);
                    RHVector3 vert1 = new RHVector3(vertex.X, vertex.Y, vertex.Z);
                    vertex = obj.GetVertex(face.Vertex2);
                    RHVector3 vert2 = new RHVector3(vertex.X, vertex.Y, vertex.Z);
                    vertex = obj.GetVertex(face.Vertex3);
                    RHVector3 vert3 = new RHVector3(vertex.X, vertex.Y, vertex.Z);
                    RHVector3 normal = new RHVector3(0, 0, 0);
                    vert1.Scale(scale);
                    vert2.Scale(scale);
                    vert3.Scale(scale);

                    addTriangle(vert1, vert2, vert3, normal).RecomputeNormal();
                }
            }
            return true;
        }
Exemplo n.º 7
0
        public bool Intersects(TopoTriangle tri)
        {
            // First detect shared edges for more reliable and faster tests
            TopoVertex[] shared = new TopoVertex[3];
            TopoVertex[] uniqueA = new TopoVertex[3];
            TopoVertex[] uniqueB = new TopoVertex[3];
            int          nShared = 0, nUniqueA = 0, nUniqueB = 0;

            for (int i = 0; i < 3; i++)
            {
                bool isDouble = false;
                for (int j = 0; j < 3; j++)
                {
                    if (vertices[i] == tri.vertices[j])
                    {
                        shared[nShared++] = vertices[i];
                        isDouble          = true;
                        break;
                    }
                }
                if (!isDouble)
                {
                    uniqueA[nUniqueA++] = vertices[i];
                }
            }
            if (nShared > 0)
            {
                for (int i = 0; i < 3; i++)
                {
                    bool isDouble = false;
                    for (int j = 0; j < nShared; j++)
                    {
                        if (tri.vertices[i] == shared[j])
                        {
                            isDouble = true;
                            break;
                        }
                    }
                    if (!isDouble)
                    {
                        uniqueB[nUniqueB++] = tri.vertices[i];
                    }
                }
                if (nShared == 1)
                {
                    return(IntersectsSharedVertex(shared[0], uniqueA, uniqueB, tri));
                }
                if (nShared == 2)
                {
                    return(IntersectsSharedEdge(shared, uniqueA[0], uniqueB[0], tri));
                }
                return(true);
            }
            // Nice to read but unoptimized intersection computation
            RHMatrix3 A  = new RHMatrix3();
            RHVector3 p1 = vertices[1].pos.Subtract(vertices[0].pos);
            RHVector3 p2 = vertices[2].pos.Subtract(vertices[0].pos);

            A.SetXColumn(p1);
            A.SetYColumn(p2);
            RHVector3 P  = new RHVector3(vertices[0].pos);
            RHVector3 q1 = tri.vertices[1].pos.Subtract(tri.vertices[0].pos);
            RHVector3 q2 = tri.vertices[2].pos.Subtract(tri.vertices[0].pos);
            RHVector3 r1 = tri.vertices[0].pos.Subtract(P); // r2 == r1!
            RHVector3 r3 = tri.vertices[2].pos.Subtract(P);

            A.SetZColumn(q1);
            double detAq1 = A.Determinant;

            A.SetZColumn(q2);
            double detAq2 = A.Determinant;
            //A.SetZColumn(q3);
            double detAq3 = detAq1 - detAq2; // A.Determinant;

            A.SetZColumn(r1);
            double detAr1 = A.Determinant;
            //A.SetZColumn(r3);
            double detAr3    = detAr1 + detAq2; // A.Determinant;
            int    intersect = 0;

            if (detAq1 == 0 && detAq2 == 0 && detAq3 == 0) // same plane case
            {
                if (detAr1 != 0)
                {
                    return(false);             // other parallel plance
                }
                // Select plane for computation x-y or x-z based on normal
                int idx1, idx2;
                DominantAxis(out idx1, out idx2);
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                // Test if point inside. 1 test per triangle is enough
                if (InPlanePointInside(idx1, idx2, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[0].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[1].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[2].pos))
                {
                    return(true);
                }
                return(false);
            }
            double beta1 = -1, beta2 = -1, beta3 = -1;

            if (detAq1 != 0)
            {
                beta1 = -detAr1 / detAq1;
                if (beta1 >= epsilonZeroMinus && beta1 <= epsilonOnePlus)
                {
                    intersect = 1;
                }
            }
            if (detAq2 != 0)
            {
                beta2 = -detAr1 / detAq2;
                if (beta2 >= epsilonZeroMinus && beta2 <= epsilonOnePlus)
                {
                    intersect |= 2;
                }
            }
            if (detAq3 != 0)
            {
                beta3 = -detAr3 / detAq3;
                if (beta3 >= epsilonZeroMinus && beta3 <= epsilonOnePlus)
                {
                    intersect |= 4;
                }
            }
            if (intersect == 7)
            { // Special case intersection in one point caused 3 valid betas
                if (Math.Abs(beta1) < epsilonZero)
                {
                    intersect = 6;
                }
                else if (Math.Abs(beta3) < epsilonZero)
                {
                    intersect = 3;
                }
                else
                {
                    intersect = 5;
                }
            }
            //if (intersect == 0) return false; // Lies on wrong side
            RHVector3 T = null, t = null;

            if ((intersect & 1) == 1)
            {
                T = new RHVector3(q1);
                T.Scale(beta1);
                T.AddInternal(tri.vertices[0].pos);
            }
            if ((intersect & 2) == 2)
            {
                if (T == null)
                {
                    T = new RHVector3(q2);
                    T.Scale(beta2);
                    T.AddInternal(tri.vertices[0].pos);
                }
                else
                {
                    q2.Scale(beta2);
                    q2.AddInternal(tri.vertices[0].pos);
                    t = q2.Subtract(T);
                }
            }
            if ((intersect & 4) == 4 && T != null && (t == null || t.Length < epsilonZero))
            {
                RHVector3 q3 = tri.vertices[1].pos.Subtract(tri.vertices[2].pos);
                q3.Scale(beta3);
                q3.AddInternal(tri.vertices[2].pos);
                t = q3.Subtract(T);
            }
            if (t == null)
            {
                return(false);
            }
            if (t.Length < epsilonZero)
            { // Only one point touches the plane
                int idx1, idx2;
                DominantAxis(out idx1, out idx2);
                return(InPlanePointInside(idx1, idx2, T));
            }
            // Compute intersection points with this triangle
            double d1 = p1.x * t.y - p1.y * t.x;
            double d2 = p1.x * t.z - p1.z * t.x;
            double delta1 = -1, delta2 = -1, delta3 = -1, gamma1 = -1, gamma2 = -1, gamma3 = -1;

            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta1 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma1 = -(p1.x * T.y - p1.y * T.x - p1.x * P.y + p1.y * P.x) / d1;
                }
                else
                {
                    delta1 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma1 = -(p1.x * T.z - p1.z * T.x - p1.x * P.z + p1.z * P.x) / d2;
                }
            }
            d1 = p2.x * t.y - p2.y * t.x;
            d2 = p2.x * t.z - p2.z * t.x;
            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta2 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma2 = -(p2.x * T.y - p2.y * T.x - p2.x * P.y + p2.y * P.x) / d1;
                }
                else
                {
                    delta2 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma2 = -(p2.x * T.z - p2.z * T.x - p2.x * P.z + p2.z * P.x) / d2;
                }
            }
            P.AddInternal(p1);
            p2.SubtractInternal(p1); // p2 is now p3!
            d1 = p2.x * t.y - p2.y * t.x;
            d2 = p2.x * t.z - p2.z * t.x;
            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta3 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma3 = -(p2.x * T.y - p2.y * T.x - p2.x * P.y + p2.y * P.x) / d1;
                }
                else
                {
                    delta3 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma3 = -(p2.x * T.z - p2.z * T.x - p2.x * P.z + p2.z * P.x) / d2;
                }
            }
            // Check for line intersection inside the line. Hits at the vertices to not count!
            if (delta1 >= epsilonZero && delta1 <= epsilonOneMinus && gamma1 >= epsilonZero && gamma1 <= epsilonOneMinus)
            {
                return(true);
            }
            if (delta2 >= epsilonZero && delta2 <= epsilonOneMinus && gamma2 >= epsilonZero && gamma2 <= epsilonOneMinus)
            {
                return(true);
            }
            if (delta3 >= epsilonZero && delta3 <= epsilonOneMinus && gamma3 >= epsilonZero && gamma3 <= epsilonOneMinus)
            {
                return(true);
            }
            // Test if intersection is inside triangle
            intersect = 0;
            if (delta1 >= epsilonZeroMinus && delta1 <= epsilonOnePlus)
            {
                intersect |= 1;
            }
            if (delta2 >= epsilonZeroMinus && delta2 <= epsilonOnePlus)
            {
                intersect |= 2;
            }
            if (delta3 >= epsilonZeroMinus && delta3 <= epsilonOnePlus)
            {
                intersect |= 4;
            }

            /*   if (gamma1 == 0) gamma1 = -1;
             * if (gamma2 == 0) gamma2 = -1;
             * if (gamma3 == 0) gamma3 = -1;*/
            if (gamma1 == 0)
            {
                intersect &= ~1;
            }
            if (gamma2 == 0)
            {
                intersect &= ~2;
            }
            if (gamma3 == 0)
            {
                intersect &= ~4;
            }

            /*       if ((intersect & 3) == 3) return gamma1 * gamma2 < 0;
             *     if ((intersect & 5) == 5) return gamma1 * gamma3 < 0;
             *     if ((intersect & 6) == 6) return gamma3 * gamma2 < 0;*/
            if ((intersect & 3) == 3)
            {
                if (gamma1 * gamma2 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            if ((intersect & 5) == 5)
            {
                if (gamma1 * gamma3 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            if ((intersect & 6) == 6)
            {
                if (gamma3 * gamma2 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            // if (intersect!=0) happens only with numeric problems
            //    return true;
            return(false); // No intersection found :-)
        }
Exemplo n.º 8
0
        public void FixColinear(TopoModel model)
        {
            RHVector3 center = vertices[0].pos.Add(vertices[1].pos).Add(vertices[2].pos);

            center.Scale(1 / 3.0);
            int    best     = -1;
            double bestdist = 1e30;

            for (int i = 0; i < 3; i++)
            {
                if (vertices[i].connectedFaces == 1)
                {
                    continue;
                }
                double dist = center.Subtract(vertices[i].pos).Length;
                if (dist < bestdist)
                {
                    bestdist = dist;
                    best     = i;
                }
            }
            if (best == -1)
            {
                throw new Exception("CheckIfColinearAndFix called on isolated triangle");
            }
            edges[(best + 1) % 3].InsertVertex(model, vertices[best]);

            /*
             * // Find an other face sharing vertex
             * TopoTriangle otherFace = null;
             * TopoVertex moveVertex = vertices[best];
             * foreach (TopoTriangle triangle in moveVertex.connectedFacesList)
             * {
             *  if (triangle != this)
             *  {
             *      otherFace = triangle;
             *      break;
             *  }
             * }
             * // Now find the not shared vertex
             * TopoVertex oppositeVertex = null;
             * for (int i = 0; i < 3; i++)
             * {
             *  bool notSame = true;
             *  for (int j = 0; j < 3; j++)
             *  {
             *      if (otherFace.vertices[i] == vertices[j])
             *      {
             *          notSame = false;
             *          break;
             *      }
             *  }
             *  if (notSame)
             *  {
             *      oppositeVertex = otherFace.vertices[i];
             *  }
             * }
             * RHVector3 line = moveVertex.pos.Subtract(oppositeVertex.pos);
             * double lineLength = line.Length;
             * double moveFactor = 0.01;
             * if (0.99 * lineLength > 0.01) moveFactor = 0.01 / lineLength;
             * line.Scale(moveFactor);
             * moveVertex.pos = moveVertex.pos.Add(line);
             * RecomputeNormal();*/
        }