public RecommenderSystemEngine(RankingDB db)
 {
     usr2usr.Add(PredictionMethod.Pearson, new SimilartyData(Pearson));
     usr2usr.Add(PredictionMethod.Cosine, new SimilartyData(Cosine));
     _db           = db;
     MinSimilarity = 0.7;
 }
Exemplo n.º 2
0
        //Compute the hit ratio of all the methods in the list for a given train-test split (e.g. 0.95 train set size)

        /*public Dictionary<string, double> ComputeHitRatio(List<PredictionMethod> lMethods, double dTrainSetSize)
         * {
         *  Dictionary<string, double> res = new Dictionary<string, double>();
         *  foreach (var m in lMethods)
         *  {
         *      res.Add(m.ToString(), CalcHitRatio(m, dTrainSetSize));
         *  }
         *  return res;
         * }*/



        /*private int GetGrade(PredictionMethod m, RankingDB train, RankingDB test)
         * {
         *  var engineTrain = SetEngine(train);
         *
         *
         *  int grade = 0;
         *  var allTest = test.GetAllData();
         *  foreach (var rankData in allTest)
         *  {
         *      double pretictedRating = Math.Round(engineTrain.PredictRating(m, rankData.ranker, rankData.item));
         *      if (pretictedRating == rankData.rank)
         ++grade;
         *  }
         *  return grade;
         * }
         *
         * private RecommenderSystemEngine SetEngine(RankingDB train)
         * {
         *  var engineTrain = new RecommenderSystemEngine(train);
         *  if (_engine.Mode == FilterMode.MaxUsers)
         *      engineTrain.MaxUsers = _engine.MaxUsers;
         *  else
         *      engineTrain.MinSimilarity = _engine.MinSimilarity;
         *  return engineTrain;
         * }*/

        // the train and test are initiliazed
        private void DivideDB(RankingDB allRatings, double dTrainSetSize, RankingDB train, RankingDB test)
        {
            var users = allRatings.GetRankers();
            //quick add and contains
            HashSet <string> chosenUsers = new HashSet <string>();
            int testSize = (int)Math.Round((1 - dTrainSetSize) * allRatings.NumOfRanks());

            while (test.NumOfRanks() < testSize)
            {
                var currentUser = chooseNewRandomUser(users, chosenUsers);
                chosenUsers.Add(currentUser);
                IEnumerable <RankingDB.RankData> randomRanks = chooseSomeRandomRanks(currentUser, allRatings);
                train.Add(randomRanks);
                var other      = otherRanks(currentUser, randomRanks, allRatings);
                int otherCount = allRatings.NumOfRanks(currentUser) - randomRanks.Count();
                int diff       = otherCount - (testSize - test.NumOfRanks());
                if (diff > 0) //other count > free space in test
                {
                    train.Add(other.Take(diff));
                    test.Add(other.Skip(diff));
                }
                else
                {
                    test.Add(other);
                }
            }

            foreach (var usr in users)
            {
                if (!chosenUsers.Contains(usr))
                {
                    train.AddUser(usr, allRatings.GetUserData(usr));
                }
            }
        }
Exemplo n.º 3
0
        public void Load(string sFileName, double dTrainSetSize)
        {
            RankingDB db = Load(sFileName);

            _test  = new RankingDB();
            _train = new RankingDB();
            DivideDB(db, dTrainSetSize, _train, _test);
            _trainEngine = new RecommenderSystemEngine(_train);
        }
Exemplo n.º 4
0
        //load a dataset from a file
        public RankingDB Load(string sFileName)
        {
            RankingDB db = new RankingDB();
            //_engine = new RecommenderSystemEngine(_ratings);
            var lines = File.ReadLines(sFileName);

            //var lines = LoadPart(sFileName, 50000);
            foreach (var line in lines)
            {
                var parts = line.Split(',');
                db.Add(parts[0], parts[1], int.Parse(parts[2]));
            }
            return(db);
        }
Exemplo n.º 5
0
        private IEnumerable <RankingDB.RankData> chooseSomeRandomRanks(string user, RankingDB allRatings)
        {
            //var usrRanks = allRatings.GetRanksAndItems(user);
            var    items = allRatings.getItems(user);
            Random rand  = new Random();
            int    k     = rand.Next(1, items.Count() + 1);

            RankingDB.RankData[] res = new RankingDB.RankData[k];
            for (int i = 0; i < k; i++)
            {
                int    index = rand.Next(items.Count());
                string item  = items.ElementAt(index);
                res[i] = new RankingDB.RankData(user, item, allRatings.GetRank(user, item).Value);
            }
            return(res);
        }
Exemplo n.º 6
0
        public void TrainBaseModel(int cFeatures)
        {
            double avg = (_train.SumRanks() + _test.SumRanks()) / (_train.NumOfRanks() + _test.NumOfRanks());
            var    svd = new SVD(avg, cFeatures);

            RankingDB train      = new RankingDB();
            RankingDB validation = new RankingDB();

            DivideDB(_train, 0.95, train, validation);

            var    ranks = train.GetAllData();
            double RMSE = double.MaxValue; double LastRMSE = double.MaxValue;

            while (RMSE <= LastRMSE)
            {
                LastRMSE = RMSE;
                svd.Train(ranks);
                _trainEngine.setSVD(svd);
                RMSE = ComputeRMSE(PredictionMethod.SVD, _trainEngine, validation.GetAllData());
            }
            //_engine.setSVD(svd);
        }
Exemplo n.º 7
0
 private double ComputeRMSE(PredictionMethod m, RankingDB db)
 {
     return(ComputeRMSE(m, new RecommenderSystemEngine(db), db.GetAllData()));
 }
Exemplo n.º 8
0
 private IEnumerable <RankingDB.RankData> otherRanks(string currentUser, IEnumerable <RankingDB.RankData> ranks, RankingDB allRatings)
 {
     return(allRatings.GetRanksAndItems(currentUser).Except(ranks));
 }