Exemplo n.º 1
0
        public void Clear()
        {
            agents_ = new List<Agent>();
            obstacles_ = new List<Obstacle>();
            time_ = 0;
            defaultAgent_ = null;
            kdTree_ = new KdTree();
            timeStep_ = .1f;

            SetNumWorkers(0);
        }
Exemplo n.º 2
0
        internal void insertAgentNeighbor(Agent agent, ref float rangeSq)
        {
            if (this != agent)
            {
                float distSq = RVOMath.absSq(position_ - agent.position_);

                if (distSq < rangeSq)
                {
                    if (agentNeighbors_.Count < maxNeighbors_)
                    {
                        agentNeighbors_.Add(new KeyValuePair<float, Agent>(distSq, agent));
                    }
                    int i = agentNeighbors_.Count - 1;
                    while (i != 0 && distSq < agentNeighbors_[i - 1].Key)
                    {
                        agentNeighbors_[i] = agentNeighbors_[i - 1];
                        --i;
                    }
                    agentNeighbors_[i] = new KeyValuePair<float, Agent>(distSq, agent);

                    if (agentNeighbors_.Count == maxNeighbors_)
                    {
                        rangeSq = agentNeighbors_[agentNeighbors_.Count-1].Key;
                    }
                }
            }
        }
Exemplo n.º 3
0
        public void setAgentDefaults(float neighborDist, int maxNeighbors, float timeHorizon, float timeHorizonObst, float radius, float maxSpeed, Vector2 velocity)
        {
            if (defaultAgent_ == null)
            {
                defaultAgent_ = new Agent();
            }

            defaultAgent_.maxNeighbors_ = maxNeighbors;
            defaultAgent_.maxSpeed_ = maxSpeed;
            defaultAgent_.neighborDist_ = neighborDist;
            defaultAgent_.radius_ = radius;
            defaultAgent_.timeHorizon_ = timeHorizon;
            defaultAgent_.timeHorizonObst_ = timeHorizonObst;
            defaultAgent_.velocity_ = velocity;
        }
Exemplo n.º 4
0
        /**
         * <summary>Recursive method for computing the obstacle neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which obstacle neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private void queryObstacleTreeRecursive(Agent agent, float rangeSq, ObstacleTreeNode node)
        {
            if (node != null)
            {
                Obstacle obstacle1 = node.obstacle_;
                Obstacle obstacle2 = obstacle1.next_;

                float agentLeftOfLine = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, agent.position_);

                queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0.0f ? node.left_ : node.right_);

                float distSqLine = RVOMath.sqr(agentLeftOfLine) / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

                if (distSqLine < rangeSq)
                {
                    if (agentLeftOfLine < 0.0f)
                    {
                        /*
                         * Try obstacle at this node only if agent is on right side of
                         * obstacle (and can see obstacle).
                         */
                        agent.insertObstacleNeighbor(node.obstacle_, rangeSq);
                    }

                    /* Try other side of line. */
                    queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0.0f ? node.right_ : node.left_);
                }
            }
        }
Exemplo n.º 5
0
        public int addAgent(Vector2 position)
        {
            if (defaultAgent_ == null)
            {
                return -1;
            }

            Agent agent = new Agent();

            agent.position_ = position;
            agent.maxNeighbors_ = defaultAgent_.maxNeighbors_;
            agent.maxSpeed_ = defaultAgent_.maxSpeed_;
            agent.neighborDist_ = defaultAgent_.neighborDist_;
            agent.radius_ = defaultAgent_.radius_;
            agent.timeHorizon_ = defaultAgent_.timeHorizon_;
            agent.timeHorizonObst_ = defaultAgent_.timeHorizonObst_;
            agent.velocity_ = defaultAgent_.velocity_;

            agent.id_ = agents_.Count;

            agents_.Add(agent);

            return agents_.Count - 1;

        }
Exemplo n.º 6
0
 /**
  * <summary>Computes the obstacle neighbors of the specified agent.
  * </summary>
  *
  * <param name="agent">The agent for which obstacle neighbors are to be
  * computed.</param>
  * <param name="rangeSq">The squared range around the agent.</param>
  */
 internal void computeObstacleNeighbors(Agent agent, float rangeSq)
 {
     queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_);
 }
Exemplo n.º 7
0
        /**
         * <summary>Recursive method for computing the agent neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which agent neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current agent k-D tree node index.</param>
         */
        private void queryAgentTreeRecursive(Agent agent, ref float rangeSq, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    agent.insertAgentNeighbor(agents_[i], ref rangeSq);
                }
            }
            else
            {
                float distSqLeft = RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].left_].minX_ - agent.position_.x_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.x_ - agentTree_[agentTree_[node].left_].maxX_)) + RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].left_].minY_ - agent.position_.y_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.y_ - agentTree_[agentTree_[node].left_].maxY_));
                float distSqRight = RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].right_].minX_ - agent.position_.x_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.x_ - agentTree_[agentTree_[node].right_].maxX_)) + RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].right_].minY_ - agent.position_.y_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.y_ - agentTree_[agentTree_[node].right_].maxY_));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);
                        }
                    }
                }

            }
        }
Exemplo n.º 8
0
 /**
  * <summary>Computes the agent neighbors of the specified agent.
  * </summary>
  *
  * <param name="agent">The agent for which agent neighbors are to be
  * computed.</param>
  * <param name="rangeSq">The squared range around the agent.</param>
  */
 internal void computeAgentNeighbors(Agent agent, ref float rangeSq)
 {
     queryAgentTreeRecursive(agent, ref rangeSq, 0);
 }
Exemplo n.º 9
0
        void queryAgentTreeRecursive(Agent agent, ref float rangeSq, int node)
        {
            if (agentTree_[node].end - agentTree_[node].begin <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin; i < agentTree_[node].end; ++i)
                {
                    agent.insertAgentNeighbor(agents_[i], ref rangeSq);
                }
            }
            else
            {
                float distSqLeft = RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].left].minX - agent.position_.X)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.X - agentTree_[agentTree_[node].left].maxX)) + RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].left].minY - agent.position_.Y)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.Y - agentTree_[agentTree_[node].left].maxY));

                float distSqRight = RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].right].minX - agent.position_.X)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.X - agentTree_[agentTree_[node].right].maxX)) + RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].right].minY - agent.position_.Y)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.Y - agentTree_[agentTree_[node].right].maxY));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left);
                        }
                    }
                }

            }
        }
Exemplo n.º 10
0
 public void AgentChose(int i)
 {
     agent = RVO.Simulator.Instance.agents_ [i];
     Debug.Log (agent);
     //radius = 3;
 }
Exemplo n.º 11
0
        /**
         * <summary>Computes the new velocity of this agent.</summary>
         */
        internal void computeNewVelocity()
        {
            orcaLines_.Clear();

            float invTimeHorizonObst = 1.0f / timeHorizonObst_;

            /* Create obstacle ORCA lines. */
            for (int i = 0; i < obstacleNeighbors_.Count; ++i)
            {
                Obstacle obstacle1 = obstacleNeighbors_[i].Value;
                Obstacle obstacle2 = obstacle1.next_;

                Vector2 relativePosition1 = obstacle1.point_ - position_;
                Vector2 relativePosition2 = obstacle2.point_ - position_;

                /*
                 * Check if velocity obstacle of obstacle is already taken care
                 * of by previously constructed obstacle ORCA lines.
                 */
                bool alreadyCovered = false;

                for (int j = 0; j < orcaLines_.Count; ++j)
                {
                    if (RVOMath.det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVOMath.RVO_EPSILON && RVOMath.det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVOMath.RVO_EPSILON)
                    {
                        alreadyCovered = true;

                        break;
                    }
                }

                if (alreadyCovered)
                {
                    continue;
                }

                /* Not yet covered. Check for collisions. */
                float distSq1 = RVOMath.absSq(relativePosition1);
                float distSq2 = RVOMath.absSq(relativePosition2);

                float radiusSq = RVOMath.sqr(radius_);

                Vector2 obstacleVector = obstacle2.point_ - obstacle1.point_;
                float   s          = (-relativePosition1 * obstacleVector) / RVOMath.absSq(obstacleVector);
                float   distSqLine = RVOMath.absSq(-relativePosition1 - s * obstacleVector);

                Line line;

                if (s < 0.0f && distSq1 <= radiusSq)
                {
                    /* Collision with left vertex. Ignore if non-convex. */
                    if (obstacle1.convex_)
                    {
                        line.point     = new Vector2(0.0f, 0.0f);
                        line.direction = RVOMath.normalize(new Vector2(-relativePosition1.y(), relativePosition1.x()));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s > 1.0f && distSq2 <= radiusSq)
                {
                    /*
                     * Collision with right vertex. Ignore if non-convex or if
                     * it will be taken care of by neighboring obstacle.
                     */
                    if (obstacle2.convex_ && RVOMath.det(relativePosition2, obstacle2.direction_) >= 0.0f)
                    {
                        line.point     = new Vector2(0.0f, 0.0f);
                        line.direction = RVOMath.normalize(new Vector2(-relativePosition2.y(), relativePosition2.x()));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq)
                {
                    /* Collision with obstacle segment. */
                    line.point     = new Vector2(0.0f, 0.0f);
                    line.direction = -obstacle1.direction_;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * No collision. Compute legs. When obliquely viewed, both legs
                 * can come from a single vertex. Legs extend cut-off line when
                 * non-convex vertex.
                 */

                Vector2 leftLegDirection, rightLegDirection;

                if (s < 0.0f && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that left vertex
                     * defines velocity obstacle.
                     */
                    if (!obstacle1.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle2 = obstacle1;

                    float leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                    leftLegDirection  = new Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                    rightLegDirection = new Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                }
                else if (s > 1.0f && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that
                     * right vertex defines velocity obstacle.
                     */
                    if (!obstacle2.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle1 = obstacle2;

                    float leg2 = RVOMath.sqrt(distSq2 - radiusSq);
                    leftLegDirection  = new Vector2(relativePosition2.x() * leg2 - relativePosition2.y() * radius_, relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                    rightLegDirection = new Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                }
                else
                {
                    /* Usual situation. */
                    if (obstacle1.convex_)
                    {
                        float leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                        leftLegDirection = new Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                    }
                    else
                    {
                        /* Left vertex non-convex; left leg extends cut-off line. */
                        leftLegDirection = -obstacle1.direction_;
                    }

                    if (obstacle2.convex_)
                    {
                        float leg2 = RVOMath.sqrt(distSq2 - radiusSq);
                        rightLegDirection = new Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                    }
                    else
                    {
                        /* Right vertex non-convex; right leg extends cut-off line. */
                        rightLegDirection = obstacle1.direction_;
                    }
                }

                /*
                 * Legs can never point into neighboring edge when convex
                 * vertex, take cutoff-line of neighboring edge instead. If
                 * velocity projected on "foreign" leg, no constraint is added.
                 */

                Obstacle leftNeighbor = obstacle1.previous_;

                bool isLeftLegForeign  = false;
                bool isRightLegForeign = false;

                if (obstacle1.convex_ && RVOMath.det(leftLegDirection, -leftNeighbor.direction_) >= 0.0f)
                {
                    /* Left leg points into obstacle. */
                    leftLegDirection = -leftNeighbor.direction_;
                    isLeftLegForeign = true;
                }

                if (obstacle2.convex_ && RVOMath.det(rightLegDirection, obstacle2.direction_) <= 0.0f)
                {
                    /* Right leg points into obstacle. */
                    rightLegDirection = obstacle2.direction_;
                    isRightLegForeign = true;
                }

                /* Compute cut-off centers. */
                Vector2 leftCutOff   = invTimeHorizonObst * (obstacle1.point_ - position_);
                Vector2 rightCutOff  = invTimeHorizonObst * (obstacle2.point_ - position_);
                Vector2 cutOffVector = rightCutOff - leftCutOff;

                /* Project current velocity on velocity obstacle. */

                /* Check if current velocity is projected on cutoff circles. */
                float t      = obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutOff) * cutOffVector) / RVOMath.absSq(cutOffVector);
                float tLeft  = (velocity_ - leftCutOff) * leftLegDirection;
                float tRight = (velocity_ - rightCutOff) * rightLegDirection;

                if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))
                {
                    /* Project on left cut-off circle. */
                    Vector2 unitW = RVOMath.normalize(velocity_ - leftCutOff);

                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    line.point     = leftCutOff + radius_ * invTimeHorizonObst * unitW;
                    orcaLines_.Add(line);

                    continue;
                }
                else if (t > 1.0f && tRight < 0.0f)
                {
                    /* Project on right cut-off circle. */
                    Vector2 unitW = RVOMath.normalize(velocity_ - rightCutOff);

                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    line.point     = rightCutOff + radius_ * invTimeHorizonObst * unitW;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * Project on left leg, right leg, or cut-off line, whichever is
                 * closest to velocity.
                 */
                float distSqCutoff = (t <0.0f || t> 1.0f || obstacle1 == obstacle2) ? float.PositiveInfinity : RVOMath.absSq(velocity_ - (leftCutOff + t * cutOffVector));
                float distSqLeft   = tLeft < 0.0f ? float.PositiveInfinity : RVOMath.absSq(velocity_ - (leftCutOff + tLeft * leftLegDirection));
                float distSqRight  = tRight < 0.0f ? float.PositiveInfinity : RVOMath.absSq(velocity_ - (rightCutOff + tRight * rightLegDirection));

                if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight)
                {
                    /* Project on cut-off line. */
                    line.direction = -obstacle1.direction_;
                    line.point     = leftCutOff + radius_ * invTimeHorizonObst * new Vector2(-line.direction.y(), line.direction.x());
                    orcaLines_.Add(line);

                    continue;
                }

                if (distSqLeft <= distSqRight)
                {
                    /* Project on left leg. */
                    if (isLeftLegForeign)
                    {
                        continue;
                    }

                    line.direction = leftLegDirection;
                    line.point     = leftCutOff + radius_ * invTimeHorizonObst * new Vector2(-line.direction.y(), line.direction.x());
                    orcaLines_.Add(line);

                    continue;
                }

                /* Project on right leg. */
                if (isRightLegForeign)
                {
                    continue;
                }

                line.direction = -rightLegDirection;
                line.point     = rightCutOff + radius_ * invTimeHorizonObst * new Vector2(-line.direction.y(), line.direction.x());
                orcaLines_.Add(line);
            }

            int numObstLines = orcaLines_.Count;

            float invTimeHorizon = 1.0f / timeHorizon_;

            /* Create agent ORCA lines. */
            for (int i = 0; i < agentNeighbors_.Count; ++i)
            {
                Agent other = agentNeighbors_[i].Value;

                Vector2 relativePosition = other.position_ - position_;
                Vector2 relativeVelocity = velocity_ - other.velocity_;
                float   distSq           = RVOMath.absSq(relativePosition);
                float   combinedRadius   = radius_ + other.radius_;
                float   combinedRadiusSq = RVOMath.sqr(combinedRadius);

                Line    line;
                Vector2 u;

                if (distSq > combinedRadiusSq)
                {
                    /* No collision. */
                    Vector2 w = relativeVelocity - invTimeHorizon * relativePosition;

                    /* Vector from cutoff center to relative velocity. */
                    float wLengthSq   = RVOMath.absSq(w);
                    float dotProduct1 = w * relativePosition;

                    if (dotProduct1 < 0.0f && RVOMath.sqr(dotProduct1) > combinedRadiusSq * wLengthSq)
                    {
                        /* Project on cut-off circle. */
                        float   wLength = RVOMath.sqrt(wLengthSq);
                        Vector2 unitW   = w / wLength;

                        line.direction = new Vector2(unitW.y(), -unitW.x());
                        u = (combinedRadius * invTimeHorizon - wLength) * unitW;
                    }
                    else
                    {
                        /* Project on legs. */
                        float leg = RVOMath.sqrt(distSq - combinedRadiusSq);

                        if (RVOMath.det(relativePosition, w) > 0.0f)
                        {
                            /* Project on left leg. */
                            line.direction = new Vector2(relativePosition.x() * leg - relativePosition.y() * combinedRadius, relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
                        }
                        else
                        {
                            /* Project on right leg. */
                            line.direction = -new Vector2(relativePosition.x() * leg + relativePosition.y() * combinedRadius, -relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
                        }

                        float dotProduct2 = relativeVelocity * line.direction;
                        u = dotProduct2 * line.direction - relativeVelocity;
                    }
                }
                else
                {
                    /* Collision. Project on cut-off circle of time timeStep. */
                    float invTimeStep = 1.0f / Simulator.Instance.timeStep_;

                    /* Vector from cutoff center to relative velocity. */
                    Vector2 w = relativeVelocity - invTimeStep * relativePosition;

                    float   wLength = RVOMath.abs(w);
                    Vector2 unitW   = w / wLength;

                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    u = (combinedRadius * invTimeStep - wLength) * unitW;
                }

                line.point = velocity_ + 0.5f * u;
                orcaLines_.Add(line);
            }

            int lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, ref newVelocity_);

            if (lineFail < orcaLines_.Count)
            {
                linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, ref newVelocity_);
            }
        }
Exemplo n.º 12
0
        /**
         * <summary>Adds a new agent to the simulation.</summary>
         *
         * <returns>The number of the agent.</returns>
         *
         * <param name="position">The two-dimensional starting position of this
         * agent.</param>
         * <param name="neighborDist">The maximum distance (center point to
         * center point) to other agents this agent takes into account in the
         * navigation. The larger this number, the longer the running time of
         * the simulation. If the number is too low, the simulation will not be
         * safe. Must be non-negative.</param>
         * <param name="maxNeighbors">The maximum number of other agents this
         * agent takes into account in the navigation. The larger this number,
         * the longer the running time of the simulation. If the number is too
         * low, the simulation will not be safe.</param>
         * <param name="timeHorizon">The minimal amount of time for which this
         * agent's velocities that are computed by the simulation are safe with
         * respect to other agents. The larger this number, the sooner this
         * agent will respond to the presence of other agents, but the less
         * freedom this agent has in choosing its velocities. Must be positive.
         * </param>
         * <param name="timeHorizonObst">The minimal amount of time for which
         * this agent's velocities that are computed by the simulation are safe
         * with respect to obstacles. The larger this number, the sooner this
         * agent will respond to the presence of obstacles, but the less freedom
         * this agent has in choosing its velocities. Must be positive.</param>
         * <param name="radius">The radius of this agent. Must be non-negative.
         * </param>
         * <param name="maxSpeed">The maximum speed of this agent. Must be
         * non-negative.</param>
         * <param name="velocity">The initial two-dimensional linear velocity of
         * this agent.</param>
         */
        public int addAgent(Vector2 position, float neighborDist, int maxNeighbors, float timeHorizon, float timeHorizonObst, float radius, float maxSpeed, Vector2 velocity)
        {
            Agent agent = new Agent();
            agent.id_ = agents_.Count;
            agent.maxNeighbors_ = maxNeighbors;
            agent.maxSpeed_ = maxSpeed;
            agent.neighborDist_ = neighborDist;
            agent.position_ = position;
            agent.radius_ = radius;
            agent.timeHorizon_ = timeHorizon;
            agent.timeHorizonObst_ = timeHorizonObst;
            agent.velocity_ = velocity;
            agents_.Add(agent);

            return agent.id_;
        }