Exemplo n.º 1
0
        //Extract word embedding features from current context
        public VectorBase ExtractDenseFeature(int currentState, int numStates, List <string[]> features)
        {
            var fc = m_FeatureConfiguration;

            if (fc.ContainsKey(WORDEMBEDDING_CONTEXT) == true)
            {
                List <int> v = fc[WORDEMBEDDING_CONTEXT];
                if (v.Count == 1)
                {
                    string strKey = features[TruncPosition((int)currentState + v[0], 0, (int)numStates)][m_WordEmbeddingCloumn];
                    return(m_WordEmbedding.GetTermVector(strKey));
                }

                CombinedVector dense = new CombinedVector();
                for (int j = 0; j < v.Count; j++)
                {
                    int offset = currentState + v[j];
                    if (offset >= 0 && offset < numStates)
                    {
                        string strKey = features[offset][m_WordEmbeddingCloumn];
                        dense.Append(m_WordEmbedding.GetTermVector(strKey));
                    }
                    else
                    {
                        dense.Append(m_WordEmbedding.m_UnkEmbedding);
                    }
                }


                return(dense);
            }

            return(new SingleVector());
        }
Exemplo n.º 2
0
        //Extract word embedding features from current context
        public VectorBase ExtractDenseFeature(int currentState, int numStates, List <string[]> features)
        {
            var fc = featureContext;

            if (fc.ContainsKey(WORDEMBEDDING_CONTEXT))
            {
                var v = fc[WORDEMBEDDING_CONTEXT];
                if (v.Count == 1)
                {
                    var strKey = features[TruncPosition(currentState + v[0], 0, numStates)][preTrainedModelColumn];
                    return(preTrainedModel.GetTermVector(strKey));
                }

                var dense = new CombinedVector();
                for (var j = 0; j < v.Count; j++)
                {
                    var offset = currentState + v[j];
                    if (offset >= 0 && offset < numStates)
                    {
                        var strKey = features[offset][preTrainedModelColumn];
                        dense.Append(preTrainedModel.GetTermVector(strKey));
                    }
                    else
                    {
                        dense.Append(preTrainedModel.m_UnkEmbedding);
                    }
                }

                return(dense);
            }

            return(new SingleVector());
        }
Exemplo n.º 3
0
        //Extract word embedding features from current context
        public Vector ExtractDenseFeature(int currentState, int numStates, List<string[]> features)
        {
            var fc = m_FeatureConfiguration;

            if (fc.ContainsKey(WORDEMBEDDING_CONTEXT) == true)
            {
                List<int> v = fc[WORDEMBEDDING_CONTEXT];
                if (v.Count == 1)
                {
                    string strKey = features[TruncPosition((int)currentState + v[0], 0, (int)numStates)][m_WordEmbeddingCloumn];
                    return m_WordEmbedding.GetTermVector(strKey);
                }

                CombinedVector dense = new CombinedVector();
                for (int j = 0;j < v.Count;j++)
                {
                    int offset = currentState + v[j];
                    if (offset >= 0 && offset < numStates)
                    {
                        string strKey = features[offset][m_WordEmbeddingCloumn];
                        dense.Append(m_WordEmbedding.GetTermVector(strKey));
                    }
                    else
                    {
                        dense.Append(m_WordEmbedding.m_UnkEmbedding);
                    }
                }

                return dense;
            }

            return new SingleVector();
        }