Exemplo n.º 1
0
        /// <summary>
        /// Returns the probability of an event occuring in k out of n trials, given
        /// that the probability of the event occuring in any one trial is p.
        /// </summary>
        /// <param name="p">Probability that the event occurs in any one trial.</param>
        /// <param name="n">Number of trials.</param>
        /// <param name="k">Number of times the event occurs in n trials.</param>
        /// <returns></returns>
        public static double BinomialProbabilityDensityFunction(double p, int n, int k)
        {
            //# of combinations can exceed max double for n > 1020
            if (n > 1020)
            {
                double logB = MMath.LogCombin(n, k) + k * Math.Log(p) + (n - k) * Math.Log(1 - p);
                return(Math.Exp(logB));
            }

            return(MMath.Combinations(n, k) * Math.Pow(p, k) * Math.Pow(1 - p, n - k));
        }
Exemplo n.º 2
0
 /// <summary>
 /// For n independent draws from a standard uniform distribution (range = 0-1), the probability that the minimum is less than or equal to x.
 /// </summary>
 public static double IndependentStandardUniformMinimumCumulativeDistributionFunction(double x, int nDistributions)
 {
     double p = 0;
     int sign = 1;
     for (int i = 1; i < nDistributions; i++)
     {
         p += MMath.Combinations(nDistributions, i) * Math.Pow(x, i) * sign;
         sign *= -1;
     }
     return p;
 }
Exemplo n.º 3
0
        /// <summary>
        /// The Irwin-Hall distribution results from the sum on n independent standard uniform variables
        /// </summary>
        /// <param name="x">The value at which to evaluate the distribution.</param>
        /// <param name="n">The number of standard uniform variables.</param>
        public static double IrwinHallProbabilityDensityFunction(double x, int n)
        {
            if (x < 0 || x > n)
            {
                return(0.0);
            }
            double d = 0;

            for (int i = 0; i <= n; i++)
            {
                d += Math.Pow(-1, i) * MMath.Combinations(n, i) * Math.Pow(x - i, n - 1) * Math.Sign(x - i);
            }
            d *= 0.5;
            d /= MMath.Factorial(n - 1);
            return(d);
        }