Exemplo n.º 1
0
        public static Tensor Deconv2D(Tensor input, Tensor filter, Tensor bias)
        {
            var channels = filter.Shape[3];
            var kernel   = "TransConv2D_" + (channels == 3 ? "final" : channels.ToString());

            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Up, kernel, input, filter, bias));
        }
Exemplo n.º 2
0
        public static Tensor Deconv2D(Tensor input, Tensor filter, Tensor bias)
        {
#if ENABLE_COMPUTE
            var outChannels = filter.Shape[2];
            var kernel      = outChannels >= 512 ? "Deconv2D_512_1_1" : "Deconv2D_64_16_1";
            if (outChannels == 3)
            {
                kernel = "Deconv2D_3_256_1";
            }
            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Backward, kernel, input, filter, bias));
#else
            var inHeight   = input.Shape[0];
            var inWidth    = input.Shape[1];
            var inChannels = input.Shape[2];

            var outHeight   = inHeight * 2;
            var outWidth    = inWidth * 2;
            var outChannels = filter.Shape[2];

            var filterHeight = filter.Shape[0];
            var filterWidth  = filter.Shape[1];

            var output = new Tensor(new [] { outHeight, outWidth, outChannels });

            for (var oc = 0; oc < outChannels; oc++)
            {
                for (var oy = 0; oy < outHeight; oy++)
                {
                    var ymin = (oy - 1) / 2;

                    for (var ox = 0; ox < outWidth; ox++)
                    {
                        var xmin = (ox - 1) / 2;
                        var prod = 0.0f;

                        for (var fy = oy % 2; fy < filterHeight; fy += 2)
                        {
                            for (var fx = ox % 2; fx < filterWidth; fx += 2)
                            {
                                for (var ic = 0; ic < inChannels; ic++)
                                {
                                    var pixel  = input.Get(ymin + fy / 2, xmin + fx / 2, ic);
                                    var weight = filter.Get(
                                        filterHeight - 1 - fy,
                                        filterWidth - 1 - fx,
                                        oc, ic
                                        );
                                    prod += pixel * weight;
                                }
                            }
                        }

                        output.Set(oy, ox, oc, prod + bias.Get(oc));
                    }
                }
            }

            return(output);
#endif
        }
Exemplo n.º 3
0
        public static Tensor Tanh(Tensor input)
        {
            var output = new Tensor(input.Shape);

            GpuHelper.InvokeActivationKernel("Tanh", input, output);
            return(output);
        }
Exemplo n.º 4
0
        public static Tensor BatchNorm(Tensor input, Tensor scale, Tensor offset)
        {
            var channels = scale.Shape[0];
            var kernel   = channels == 512 ? "BatchNorm512" : "BatchNorm64";

            return(GpuHelper.InvokeBatchNormKernel(kernel, input, scale, offset));
        }
Exemplo n.º 5
0
        public static Tensor Conv2D(Tensor input, Tensor filter, Tensor bias)
        {
            var outChannels = filter.Shape[3];
            var kernel      = outChannels >= 512 ? "Conv2D_512_1" : "Conv2D_64_8";

            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Down, kernel, input, filter, bias));
        }
Exemplo n.º 6
0
        public static Tensor LeakyRelu(Tensor input, float alpha)
        {
            var output = new Tensor(input.Shape);

            ComputeAssets.Activation.SetFloat("Alpha", alpha);
            GpuHelper.InvokeActivationKernel("LeakyRelu", input, output);
            return(output);
        }
Exemplo n.º 7
0
        public static Tensor Concat(Tensor input1, Tensor input2)
        {
            var elements = input1.Shape[0] * input1.Shape[1];
            var kernel   = elements < 512 ? "Concat64" : "Concat512";

            if (elements < 64)
            {
                kernel = "Concat4";
            }
            return(GpuHelper.InvokeConcatKernel(kernel, input1, input2));
        }
Exemplo n.º 8
0
        public static Tensor Deconv2D(Tensor input, Tensor filter, Tensor bias)
        {
            var outChannels = filter.Shape[2];
            var kernel      = outChannels >= 512 ? "TransConv2D_512_1" : "TransConv2D_64_8";

            if (outChannels == 3)
            {
                kernel = "TransConv2D_3_128";
            }
            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Up, kernel, input, filter, bias));
        }
Exemplo n.º 9
0
        public static Tensor Conv2D(Tensor input, Tensor filter, Tensor bias)
        {
#if ENABLE_COMPUTE
            var outChannels = filter.Shape[3];
            var kernel      = outChannels >= 512 ? "Conv2D_512_1_1" : "Conv2D_64_16_1";
            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Forward, kernel, input, filter, bias));
#else
            var inHeight   = input.Shape[0];
            var inWidth    = input.Shape[1];
            var inChannels = input.Shape[2];

            var outHeight   = inHeight / 2;
            var outWidth    = inWidth / 2;
            var outChannels = filter.Shape[3];

            var filterHeight = filter.Shape[0];
            var filterWidth  = filter.Shape[1];

            var output = new Tensor(new [] { outHeight, outWidth, outChannels });

            for (var oc = 0; oc < outChannels; oc++)
            {
                for (var oy = 0; oy < outHeight; oy++)
                {
                    var ymin = oy * 2 - filterHeight / 2 + 1;

                    for (var ox = 0; ox < outWidth; ox++)
                    {
                        var xmin = ox * 2 - filterWidth / 2 + 1;
                        var prod = 0.0f;

                        for (var fy = 0; fy < filterHeight; fy++)
                        {
                            for (var fx = 0; fx < filterWidth; fx++)
                            {
                                for (var ic = 0; ic < inChannels; ic++)
                                {
                                    var pixel  = input.Get(ymin + fy, xmin + fx, ic);
                                    var weight = filter.Get(fy, fx, ic, oc);
                                    prod += pixel * weight;
                                }
                            }
                        }

                        output.Set(oy, ox, oc, prod + bias.Get(oc));
                    }
                }
            }

            return(output);
#endif
        }
Exemplo n.º 10
0
        public static Tensor Tanh(Tensor input)
        {
#if ENABLE_COMPUTE
            return(GpuHelper.InvokeFunctionKernel("Tanh", input));
#else
            var data = new float[input.Data.Length];
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = (float)System.Math.Tanh(input.Data[i]);
            }
            return(new Tensor(input.Shape, data));
#endif
        }
Exemplo n.º 11
0
        void Dispose(bool disposing)
        {
            if (disposing)
            {
                Shape = null;

                if (Buffer != null)
                {
                    GpuHelper.ReleaseBuffer(Buffer);
                    Buffer = null;
                }
            }
        }
Exemplo n.º 12
0
        public static Tensor BatchNorm(Tensor input, Tensor scale, Tensor offset)
        {
#if ENABLE_COMPUTE
            var channels = scale.Shape[0];
            var kernel   = channels == 512 ? "BatchNorm512" : "BatchNorm64";
            return(GpuHelper.InvokeNormalizationKernel(kernel, input, scale, offset));
#else
            UnityEngine.Debug.Assert(input.Shape.Length == 3);

            var output  = new Tensor(input.Shape);
            var epsilon = 1e-5f;

            for (var ch = 0; ch < input.Shape[2]; ch++)
            {
                var mean = 0.0f;
                for (var y = 0; y < input.Shape[0]; y++)
                {
                    for (var x = 0; x < input.Shape[1]; x++)
                    {
                        mean += input.Get(y, x, ch);
                    }
                }
                mean /= input.Shape[0] * input.Shape[1];

                var variance = 0.0f;
                for (var y = 0; y < input.Shape[0]; y++)
                {
                    for (var x = 0; x < input.Shape[1]; x++)
                    {
                        variance += MathUtil.Square(input.Get(y, x, ch) - mean);
                    }
                }
                variance /= input.Shape[0] * input.Shape[1];

                var offs = offset.Get(ch);
                var sc   = scale.Get(ch);

                sc /= UnityEngine.Mathf.Sqrt(variance + epsilon);

                for (var y = 0; y < input.Shape[0]; y++)
                {
                    for (var x = 0; x < input.Shape[1]; x++)
                    {
                        output.Set(y, x, ch, offs + (input.Get(y, x, ch) - mean) * sc);
                    }
                }
            }

            return(output);
#endif
        }
Exemplo n.º 13
0
        public Tensor(int[] shape, float[] data = null)
        {
            Shape = shape;

            var total = shape.Aggregate(1, (acc, x) => acc * x);

            Buffer = GpuHelper.AllocateBuffer(total);

            if (data != null)
            {
                Debug.Assert(data.Length == total);
                Buffer.SetData(data);
            }
        }
Exemplo n.º 14
0
        public static Tensor Relu(Tensor input)
        {
#if ENABLE_COMPUTE
            return(GpuHelper.InvokeFunctionKernel("Relu", input));
#else
            var data = new float[input.Data.Length];
            for (var i = 0; i < data.Length; i++)
            {
                var v = input.Data[i];
                data[i] = v < 0 ? 0 : v;
            }
            return(new Tensor(input.Shape, data));
#endif
        }
Exemplo n.º 15
0
        public static Tensor LeakyRelu(Tensor input, float alpha)
        {
#if ENABLE_COMPUTE
            Pix2PixResources.Compute.SetFloat("Alpha", alpha);
            return(GpuHelper.InvokeFunctionKernel("LeakyRelu", input));
#else
            var data = new float[input.Data.Length];
            for (var i = 0; i < data.Length; i++)
            {
                var v = input.Data[i];
                data[i] = v < 0 ? v * alpha : v;
            }
            return(new Tensor(input.Shape, data));
#endif
        }
Exemplo n.º 16
0
        void OnDestroy()
        {
            GpuHelper.ReleaseAllBuffers();

            Destroy(_sourceTexture);
            Destroy(_resultTexture);

            Destroy(_lineMaterial);
            Destroy(_lineMesh);

            Destroy(_eraserMaterial);
            Destroy(_eraserMesh);

            WeightReader.DisposeTable(_weightTable);
            _sourceTensor.Dispose();
            _resultTensor.Dispose();
        }
Exemplo n.º 17
0
        public static Dictionary <string, Tensor> ReadFromFile(string filename)
        {
            var table  = new Dictionary <string, Tensor>();
            var reader = new BinaryReader(File.Open(filename, FileMode.Open));

            // Read the shape list.
            var length = reader.ReadBEInt();
            var shapes = ReadShapeInfoJson(reader.ReadBytes(length));

            // Read the value table.
            length = reader.ReadBEInt();
            var values = new float[length];

            for (var i = 0; i < length / 4; i++)
            {
                values[i] = reader.ReadSingle();
            }

            // Read and decode the weight table.
            length = reader.ReadBEInt(); // not used
            for (var i = 0; i < shapes.Length; i++)
            {
                var info = shapes[i];
                length = info.shape.Aggregate(1, (acc, x) => acc * x);

                var data = new float[length];
                for (var j = 0; j < length; j++)
                {
                    data[j] = values[reader.ReadByte()];
                }

                table[info.name] = new Tensor(info.shape, data);

                if (info.name.Contains("conv2d_transpose/kernel"))
                {
                    var t = table[info.name];
                    table[info.name] = GpuHelper.SwapFilter(t);
                    t.Dispose();
                }
            }

            return(table);
        }
Exemplo n.º 18
0
        public static Tensor BatchNorm(Tensor input, Tensor scale, Tensor offset)
        {
            var kernel = "BatchNorm" + scale.Shape[0];

            return(GpuHelper.InvokeBatchNormKernel(kernel, input, scale, offset));
        }
Exemplo n.º 19
0
 public static Tensor Concat(Tensor input1, Tensor input2)
 {
     return(GpuHelper.InvokeConcatKernel(input1, input2));
 }
Exemplo n.º 20
0
 public static Tensor Tanh(Tensor input)
 {
     return(GpuHelper.InvokeActivationKernel("Tanh", input));
 }
Exemplo n.º 21
0
 public static Tensor LeakyRelu(Tensor input, float alpha)
 {
     ComputeAssets.Activation.SetFloat("Alpha", alpha);
     return(GpuHelper.InvokeActivationKernel("LeakyRelu", input));
 }
Exemplo n.º 22
0
 public static Tensor Relu(Tensor input)
 {
     return(GpuHelper.InvokeActivationKernel("Relu", input));
 }
Exemplo n.º 23
0
        public static Tensor Deconv2D(Tensor input, Tensor filter, Tensor bias)
        {
            var kernel = "TransConv2D_" + filter.Shape[2];

            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Up, kernel, input, filter, bias));
        }
Exemplo n.º 24
0
        public static Tensor Conv2D(Tensor input, Tensor filter, Tensor bias)
        {
            var kernel = "Conv2D_" + filter.Shape[3];

            return(GpuHelper.InvokeConvolutionKernel(GpuHelper.ConvolutionMode.Down, kernel, input, filter, bias));
        }
Exemplo n.º 25
0
 public static void Tanh(Tensor input, Tensor output)
 {
     GpuHelper.InvokeActivationKernel("Tanh", input, output);
 }
Exemplo n.º 26
0
 public static Tensor BatchNorm(Tensor input, Tensor scale, Tensor offset)
 {
     return(GpuHelper.InvokeBatchNormKernel(input, scale, offset));
 }