Exemplo n.º 1
0
        /// <summary>
        /// Selects all chromosomes with positive fitness from given population
        /// </summary>
        /// <param name="population">Population</param>
        /// <returns></returns>
        public static IList <IChromosome> SelectProfitableChromosomes(this PopulationBase population)
        {
            var completeList = new List <IChromosome>();

            foreach (var g in population.Generations)
            {
                completeList.AddRange(g.Chromosomes);
            }

            return(completeList.SelectDistinct()
                   .Where(c => c.Fitness != null && c.Fitness.Value > 0)
                   .OrderByDescending(c => c.Fitness.Value)
                   .ToList());
        }
Exemplo n.º 2
0
        /// <summary>
        /// Initializes a new instance of the <see cref="GeneticAlgorithm"/> class.
        /// </summary>
        /// <param name="population">The chromosomes population.</param>
        /// <param name="fitness">The fitness evaluation function.</param>
        /// <param name="taskExecutor">Task executor.</param>
        public GeneticAlgorithm(
            PopulationBase population,
            IFitness fitness,
            ITaskExecutor taskExecutor)
        {
            Population   = population;
            Fitness      = fitness;
            TaskExecutor = taskExecutor;

            // Initial state values ->
            TimeEvolving = TimeSpan.Zero;
            State        = GeneticAlgorithmState.NotStarted;

            // Init mutation - Will replace a gene at random position with a new randomly generated gene ->
            Mutation = new UniformMutation();

            // Collection of crossover operators to use ->
            CrossoverCollection = new List <ICrossover>();
        }