Exemplo n.º 1
0
        public FaceDetect()
        {
            CheckMemoryLeak();

            // CvHaarClassifierCascade, cvHaarDetectObjects

            CvColor[] colors = new CvColor[]{
                new CvColor(0,0,255),
                new CvColor(0,128,255),
                new CvColor(0,255,255),
                new CvColor(0,255,0),
                new CvColor(255,128,0),
                new CvColor(255,255,0),
                new CvColor(255,0,0),
                new CvColor(255,0,255),
            };

            const double Scale = 1.14;
            const double ScaleFactor = 1.0850;
            const int MinNeighbors = 2;

            using (IplImage img = new IplImage(FilePath.Image.Yalta, LoadMode.Color))
            using (IplImage smallImg = new IplImage(new CvSize(Cv.Round(img.Width / Scale), Cv.Round(img.Height / Scale)), BitDepth.U8, 1))
            {
                using (IplImage gray = new IplImage(img.Size, BitDepth.U8, 1))
                {
                    Cv.CvtColor(img, gray, ColorConversion.BgrToGray);
                    Cv.Resize(gray, smallImg, Interpolation.Linear);
                    Cv.EqualizeHist(smallImg, smallImg);
                }

                using (var cascade = CvHaarClassifierCascade.FromFile(FilePath.Text.HaarCascade))  
                using (var storage = new CvMemStorage())
                {
                    storage.Clear();

                    // 顔の検出
                    Stopwatch watch = Stopwatch.StartNew();
                    CvSeq<CvAvgComp> faces = Cv.HaarDetectObjects(smallImg, cascade, storage, ScaleFactor, MinNeighbors, 0, new CvSize(30, 30));
                    watch.Stop();
                    Console.WriteLine("detection time = {0}ms\n", watch.ElapsedMilliseconds);

                    // 検出した箇所にまるをつける
                    for (int i = 0; i < faces.Total; i++)
                    {
                        CvRect r = faces[i].Value.Rect;
                        CvPoint center = new CvPoint
                        {
                            X = Cv.Round((r.X + r.Width * 0.5) * Scale),
                            Y = Cv.Round((r.Y + r.Height * 0.5) * Scale)
                        };
                        int radius = Cv.Round((r.Width + r.Height) * 0.25 * Scale);
                        img.Circle(center, radius, colors[i % 8], 3, LineType.AntiAlias, 0);
                    }
                }

                // ウィンドウに表示
                CvWindow.ShowImages(img);
            }
        }
Exemplo n.º 2
0
        public Squares()
        {
            // create memory storage that will contain all the dynamic data
            CvMemStorage storage = new CvMemStorage(0);

            for (int i = 0; i < _names.Length; i++)
            {
                // load i-th image
                using (IplImage img = new IplImage(_names[i], LoadMode.Color))
                {
                    // create window and a trackbar (slider) with parent "image" and set callback
                    // (the slider regulates upper threshold, passed to Canny edge detector) 
                    Cv.NamedWindow(WindowName, WindowMode.AutoSize);

                    // find and draw the squares
                    DrawSquares(img, FindSquares4(img, storage));                    
                }

                // clear memory storage - reset free space position
                storage.Clear(); 

                // wait for key.
                // Also the function cvWaitKey takes care of event processing
                int c = Cv.WaitKey(0);
                if ((char)c == 27)
                    break;
            }

            Cv.DestroyWindow(WindowName);
        }
        public System.Drawing.Bitmap FaceDetect(IplImage src)
        {
            
            // CvHaarClassifierCascade, cvHaarDetectObjects
            // 얼굴을 검출하기 위해서 Haar 분류기의 캐스케이드를 이용한다

            CvColor[] colors = new CvColor[]{
                new CvColor(0,0,255),
                new CvColor(0,128,255),
                new CvColor(0,255,255),
                new CvColor(0,255,0),
                new CvColor(255,128,0),
                new CvColor(255,255,0),
                new CvColor(255,0,0),
                new CvColor(255,0,255),
            };

            const double scale = 1.04;
            const double scaleFactor = 1.139;
            const int minNeighbors = 1;

            using (IplImage img = src.Clone())
            using (IplImage smallImg = new IplImage(new CvSize(Cv.Round(img.Width / scale), Cv.Round(img.Height / scale)), BitDepth.U8, 1))
            {
                // 얼굴 검출을 위한 화상을 생성한다.
                using (IplImage gray = new IplImage(img.Size, BitDepth.U8, 1))
                {
                    Cv.CvtColor(img, gray, ColorConversion.BgrToGray);
                    Cv.Resize(gray, smallImg, Interpolation.Linear);
                    Cv.EqualizeHist(smallImg, smallImg);
                }

                using (CvHaarClassifierCascade cascade = CvHaarClassifierCascade.FromFile(Environment.CurrentDirectory + "\\" + "haarcascade_frontalface_alt.xml"))
                using (CvMemStorage storage = new CvMemStorage())
                {
                    storage.Clear();

                    // 얼굴을 검출한다.
                    CvSeq<CvAvgComp> faces = Cv.HaarDetectObjects(smallImg, cascade, storage, scaleFactor, minNeighbors, 0, new CvSize(20, 20));

                    // 검출한 얼굴에 검은색 원을 덮어씌운다.
                    for (int i = 0; i < faces.Total; i++)
                    {
                        CvRect r = faces[i].Value.Rect;
                        CvPoint center = new CvPoint
                        {
                            X = Cv.Round((r.X + r.Width * 0.5) * scale),
                            Y = Cv.Round((r.Y + r.Height * 0.5) * scale)
                        };
                        int radius = Cv.Round((r.Width + r.Height) * 0.25 * scale);
                        img.Circle(center, radius, new CvColor(0, 0, 0), -1, LineType.Link8, 0);
                    }
                }
                FindFace = img.Clone();

                //생성한 IplImage 화상을 비트맵으로 변환해 반환한다.
                return FindFace.ToBitmap(System.Drawing.Imaging.PixelFormat.Format24bppRgb);
            }
        }
Exemplo n.º 4
0
    // Update is called once per frame
    void Update()
    {
        IplImage frame = Cv.QueryFrame(capture);

        using (IplImage img = Cv.CloneImage(frame))
        using (IplImage smallImg = new IplImage(new CvSize(Cv.Round(img.Width / Scale), Cv.Round(img.Height / Scale)), BitDepth.U8, 1))
        {
            using (IplImage gray = new IplImage(img.Size, BitDepth.U8, 1))
            {
                Cv.CvtColor(img, gray, ColorConversion.BgrToGray);
                Cv.Resize(gray, smallImg, Interpolation.Linear);
                Cv.EqualizeHist(smallImg, smallImg);
            }

            using (CvMemStorage storage = new CvMemStorage())
            {
                storage.Clear();

                CvSeq<CvAvgComp> faces = Cv.HaarDetectObjects(smallImg, cascade, storage, ScaleFactor, MinNeighbors, 0, new CvSize(64, 64));

                for (int i = 0; i < faces.Total; i++)
                {
                    CvRect r = faces[i].Value.Rect;
                    CvPoint center = new CvPoint
                    {
                        X = Cv.Round((r.X + r.Width * 0.5) * Scale),
                        Y = Cv.Round((r.Y + r.Height * 0.5) * Scale)
                    };
                    int radius = Cv.Round((r.Width + r.Height) * 0.25 * Scale);
                    img.Circle(center, radius, colors[i % 8], 3, LineType.AntiAlias, 0);
                }

                if (faces.Total > 0)
                {
                    CvRect r = faces[0].Value.Rect;
                    facepos = new Vector2((r.X + r.Width / 2.0f) / CAPTURE_WIDTH, (r.Y + r.Height / 2.0f) / CAPTURE_HEIGHT);

                }
                else
                {
                    facepos = Vector2.zero;
                }

                if(facepos.x >= 0.2 && facepos.x <= 0.7 && facepos.y >= 0.2 && facepos.x <= 0.7)
                {
                    isFaceInCapture = true;
                }
                else
                {
                    isFaceInCapture = false;
                }
            }

            Cv.ShowImage("FaceDetect", img);
        }
    }
Exemplo n.º 5
0
	public void FaceDetect()
    {
        // CvHaarClassifierCascade, cvHaarDetectObjects
        // 顔を検出するためにHaar分類器のカスケードを用いる

        CvColor[] colors = new CvColor[]{
            new CvColor(0,0,255),
            new CvColor(0,128,255),
            new CvColor(0,255,255),
            new CvColor(0,255,0),
            new CvColor(255,128,0),
            new CvColor(255,255,0),
            new CvColor(255,0,0),
            new CvColor(255,0,255),
        };

        const double Scale = 1.14;
        const double ScaleFactor = 1.0850;
        const int MinNeighbors = 2;

        using (IplImage img = new IplImage(Application.dataPath + TestImageName, LoadMode.Color))
        using (IplImage smallImg = new IplImage(new CvSize(Cv.Round(img.Width / Scale), Cv.Round(img.Height / Scale)), BitDepth.U8, 1))
        {
            // 顔検出用の画像の生成
            using (IplImage gray = new IplImage(img.Size, BitDepth.U8, 1))
            {
                Cv.CvtColor(img, gray, ColorConversion.BgrToGray);
                Cv.Resize(gray, smallImg, Interpolation.Linear);
                Cv.EqualizeHist(smallImg, smallImg);
            }

            //using (CvHaarClassifierCascade cascade = Cv.Load<CvHaarClassifierCascade>(Const.XmlHaarcascade))  // どっちでも可
            using (CvHaarClassifierCascade cascade = CvHaarClassifierCascade.FromFile(Application.dataPath + TestTextName))    // 
            using (CvMemStorage storage = new CvMemStorage())
            {
                storage.Clear();

                // 顔の検出
                Stopwatch watch = Stopwatch.StartNew();
                CvSeq<CvAvgComp> faces = Cv.HaarDetectObjects(smallImg, cascade, storage, ScaleFactor, MinNeighbors, 0, new CvSize(30, 30));
                watch.Stop();
             //   Console.WriteLine("detection time = {0}ms\n", watch.ElapsedMilliseconds);
				UnityEngine.Debug.Log("detection time = " + watch.ElapsedMilliseconds + " ms");
             
				int i=0;
                for (i = 0; i < faces.Total; i++)
                {
                    CvRect r = faces[i].Value.Rect;
                    CvPoint center = new CvPoint
                    {
                        X = Cv.Round((r.X + r.Width * 0.5) * Scale),
                        Y = Cv.Round((r.Y + r.Height * 0.5) * Scale)
                    };
                    int radius = Cv.Round((r.Width + r.Height) * 0.25 * Scale);
                    img.Circle(center, radius, colors[i % 8], 3, LineType.AntiAlias, 0);
                }
            }

            // ウィンドウに表示
            CvWindow.ShowImages(img);
        }
    }
Exemplo n.º 6
0
        public EyeDetect()
        {
            CvColor[] colors = new CvColor[]{
                new CvColor(0,0,255),
                new CvColor(0,128,255),
                new CvColor(0,255,255),
                new CvColor(0,255,0),
                new CvColor(255,128,0),
                new CvColor(255,255,0),
                new CvColor(255,0,0),
                new CvColor(255,0,255),
            };

            const double Scale = 1.25;
            const double ScaleFactor = 2.5;
            const int MinNeighbors = 2;

            using (CvCapture cap = CvCapture.FromCamera(1))
            using (CvWindow w = new CvWindow("Eye Tracker"))
            {
                while (CvWindow.WaitKey(10) < 0)
                {
                    using (IplImage img = cap.QueryFrame())
                    using (IplImage smallImg = new IplImage(new CvSize(Cv.Round(img.Width / Scale), Cv.Round(img.Height / Scale)), BitDepth.U8, 1))
                    {

                        using (IplImage gray = new IplImage(img.Size, BitDepth.U8, 1))
                        {
                            Cv.CvtColor(img, gray, ColorConversion.BgrToGray);
                            Cv.Resize(gray, smallImg, Interpolation.Linear);
                            Cv.EqualizeHist(smallImg, smallImg);
                        }

                        using (CvHaarClassifierCascade cascade = CvHaarClassifierCascade.FromFile("C:\\Program Files\\OpenCV\\data\\haarcascades\\haarcascade_eye.xml"))
                        using (CvMemStorage storage = new CvMemStorage())
                        {
                            storage.Clear();

                            Stopwatch watch = Stopwatch.StartNew();
                            CvSeq<CvAvgComp> eyes = Cv.HaarDetectObjects(smallImg, cascade, storage, ScaleFactor, MinNeighbors, 0, new CvSize(30, 30));
                            watch.Stop();
                            //Console.WriteLine("detection time = {0}msn", watch.ElapsedMilliseconds);

                            for (int i = 0; i < eyes.Total; i++)
                            {
                                CvRect r = eyes[i].Value.Rect;
                                CvPoint center = new CvPoint
                                {
                                    X = Cv.Round((r.X + r.Width * 0.5) * Scale),
                                    Y = Cv.Round((r.Y + r.Height * 0.5) * Scale)
                                };
                                int radius = Cv.Round((r.Width + r.Height) * 0.25 * Scale);
                                img.Circle(center, radius, colors[i % 8], 3, LineType.AntiAlias, 0);
                            }
                        }

                        w.Image = img;
                    }
                }
            }
        }
Exemplo n.º 7
0
        public static IplImage FaceDe(IplImage src)
        {
            CvColor[] colors = new CvColor[]{
                new CvColor(0,0,255),
                new CvColor(0,128,255),
                new CvColor(0,255,255),
                new CvColor(0,255,0),
                new CvColor(255,128,0),
                new CvColor(255,255,0),
                new CvColor(255,0,0),
                new CvColor(255,0,255),
            };

            const double Scale = 1.04;
            const double ScaleFactor = 1.139;
            const int MinNeighbors = 2;
            //CvArr waraiotoko = Cv.LoadImage("j");
            IplImage warai = Cv.LoadImage("C:\\Users\\tamago\\Documents\\Visual Studio 2010\\project\\facematch_sample\\facematch_sample\\warai_flat.png");

            using (IplImage smallImg = new IplImage(new CvSize(Cv.Round(src.Width / Scale), Cv.Round(src.Height / Scale)), BitDepth.U8, 1))
            {
                // 顔検出用の画像の生成
                using (IplImage gray = new IplImage(src.Size, BitDepth.U8, 1))
                {
                    Cv.CvtColor(src, gray, ColorConversion.BgrToGray);
                    Cv.Resize(gray, smallImg, Interpolation.Linear);
                    Cv.EqualizeHist(smallImg, smallImg);
                }

                //using (CvHaarClassifierCascade cascade = Cv.Load<CvHaarClassifierCascade>(Const.XmlHaarcascade))  // どっちでも可
                using (CvHaarClassifierCascade cascade = CvHaarClassifierCascade.FromFile("C:\\Users\\tamago\\Documents\\Visual Studio 2010\\project\\facematch_sample\\facematch_sample\\haarcascade_frontalface_alt.xml"))
                using (CvMemStorage storage = new CvMemStorage())
                {
                    storage.Clear();

                    // 顔の検出
                    CvSeq<CvAvgComp> faces = Cv.HaarDetectObjects(smallImg, cascade, storage, ScaleFactor, MinNeighbors, 0, new CvSize(30, 30));

                    // モザイク処理
                    for (int d = 0; d < faces.Total; d++)
                    {
                        CvRect r = faces[d].Value.Rect;
                        CvSize size = new CvSize(r.Width + 30, r.Height + 30);
                        using (IplImage img_laugh_resized = new IplImage(size, warai.Depth, warai.NChannels))
                        {
                            Cv.Resize(warai, img_laugh_resized, Interpolation.NearestNeighbor);

                            int i_max = (((r.X + img_laugh_resized.Width) > src.Width) ? src.Width - r.X : img_laugh_resized.Width);
                            int j_max = (((r.Y + img_laugh_resized.Height) > src.Height) ? src.Height - r.Y : img_laugh_resized.Height);

                            for (int j = 0; j < img_laugh_resized.Width; ++j)
                            {
                                for (int i = 0; i < img_laugh_resized.Height; ++i)
                                {
                                    CvColor color = img_laugh_resized[i, j];
                                    if (img_laugh_resized[i, j].Val1 != 0) src[r.Y + i, r.X + j] = color;//img_laugh_resized[i, j];
                                }
                            }
                        }
                    }
                    return src;
                }
            }
        }
Exemplo n.º 8
0
        public void MarkerRecog()
        {
            IplImage img_gray = new IplImage(imgSrc.Size, BitDepth.U8, 1);
            IplImage img_bin = new IplImage(img_gray.Size, BitDepth.U8, 1);

            Cv.CvtColor(imgSrc, img_gray, ColorConversion.BgrToGray);

            //추가부분 히스토그램 평활화
            Cv.EqualizeHist(img_gray, img_gray);

            //컬러영상을 흑백영상으로
            Cv.Copy(img_gray, img_bin);

            //트래시홀드
            Cv.AdaptiveThreshold(img_bin, img_bin, 255, AdaptiveThresholdType.MeanC, ThresholdType.BinaryInv, 11, 2);
            //Cv.AdaptiveThreshold(img_bin, img_bin, 255, AdaptiveThresholdType.MeanC, ThresholdType.BinaryInv, 71, 45);
            //Cv.AdaptiveThreshold(img_bin, img_bin, 255, AdaptiveThresholdType.MeanC, ThresholdType.BinaryInv, 301, 45);

            //개발 참고부분 - 이진영상 보기
            /*
            IplImage timg = new IplImage(new CvSize(800, 600), BitDepth.U8, 1);
            Cv.Resize(img_bin, timg);
            Cv.ShowImage("binimg", timg);
            timg.ReleaseData();
            */

            CvMemStorage storage = new CvMemStorage(0);
            CvMemStorage storage2 = new CvMemStorage(0);

            storage.Clear();
            CvSeq<CvPoint> contours;
            CvSeq<CvPoint> approxcontours;
            int ncontours = Cv.FindContours(img_bin, storage, out contours, CvContour.SizeOf, ContourRetrieval.Tree, ContourChain.ApproxSimple);

            TargetList.Clear();

            try
            {
                if (ncontours > 0)
                {
                    //검출된 contours 단순화하기
                    approxcontours = Cv.ApproxPoly(contours, CvContour.SizeOf, storage2, ApproxPolyMethod.DP, 1.0, true);

                    //개발자 참고용
                    //tmpDrawContour(ref img_gray, ref approxcontours);

                    if (approxcontours != null)
                    {
                        FindMarkerInContour(ref approxcontours, ref storage2);

                        //tmpDrawBoxes(ref img_gray);

                        GetMarkerCode(ref img_gray);

                        contours.ClearSeq();
                        approxcontours.ClearSeq();
                    }
                }
            }
            catch (Exception ee)
            {
                string msg = ee.Message;
            }

            Cv.ReleaseMemStorage(storage);
            Cv.ReleaseMemStorage(storage2);

            //storage.Dispose();
            img_gray.ReleaseData();
            img_bin.ReleaseData();
        }