private void createNetwork(Perceptron[] ps)
        {
            if (perceptrons == null)
            {
                perceptrons = new Perceptron[neurons_per_layer.Sum()];
                int p_index = 0;
                for (int i = 0; i < hidden_layers_count; i++)
                {
                    // Check if is last layer (output layer)
                    bool isOutputLayer = false;
                    if (i == hidden_layers_count - 1)
                    {
                        isOutputLayer = true;
                    }

                    for (int p = 0; p < neurons_per_layer[i]; p++)
                    {
                        int input_nodes;
                        if (i == 0)
                        {
                            input_nodes = this.input_nodes;
                        }
                        else
                        {
                            input_nodes = neurons_per_layer[i - 1];
                        }
                        perceptrons[p_index++] = new Perceptron(input_nodes, random, isOutputLayer);
                    }
                }
            }
            else
            {
                perceptrons = ps;
            }
        }
Exemplo n.º 2
0
        public double[] Output => Neurons.Select(n => n.Output).ToArray(); //Linq expressions help with basic selections

        /// <summary>
        /// Constructs a Layer object
        /// </summary>
        /// <param name="activation">the activation function to be set in all neurons of the constructed layer</param>
        /// <param name="inputCount">the number of inputs of the layer</param>
        /// <param name="neuronCount">the number of neurons in the layer</param>
        public Layer(Func <double, double> activation, int inputCount, int neuronCount)
        {
            Neurons = new Perceptron[neuronCount];
            for (int i = 0; i < Neurons.Length; i++)
            {
                Neurons[i] = new Perceptron(activation, inputCount);
            }
        }
Exemplo n.º 3
0
        private static Perceptron Train_And()
        {
            var ts         = new TrainingSet_And();
            var perceptron = new Perceptron(ts);

            perceptron.TrainPerceptron(8);

            TestLine(0, 0, perceptron.CalculateOutput(0, 0));
            TestLine(1, 0, perceptron.CalculateOutput(1, 0));
            TestLine(0, 1, perceptron.CalculateOutput(0, 1));
            TestLine(1, 1, perceptron.CalculateOutput(1, 1));

            return(perceptron);
        }
        // Split genome to cross-over in genetic controller
        public object[] crossOverSplit()
        {
            int p1_count = (int)Math.Ceiling(perceptrons.Length / 2.0), p2_count = perceptrons.Length - p1_count;

            Perceptron[] p1 = new Perceptron[p1_count], p2 = new Perceptron[p2_count];
            for (int i = 0; i < p1_count; i++)
            {
                p1[i] = perceptrons[i];
            }
            for (int i = p1_count; i < p2_count; i++)
            {
                p2[i] = perceptrons[i];
            }
            return(new object[] { p1, p2 });
        }
Exemplo n.º 5
0
        public Neural(int inputNodes, int hiddenNodes, int outputNodes)
        {
            m_iNumInputNodes  = inputNodes;
            m_iNumHiddenNodes = hiddenNodes;
            m_iNumOutputNodes = outputNodes;

            int i, j, k;

            m_arInputNodes = new Perceptron[m_iNumInputNodes + 1];
            for (i = 0; i <= m_iNumInputNodes; i++)
            {
                m_arInputNodes[i] = new Perceptron(PerceptionType.PERCEPTION_INPUT, ActionvationFunction.SIGMOID_FUNCTION);
            }
            m_arInputNodes[m_iNumInputNodes].SetBiasNode();

            m_arHiddenNodes = new Perceptron[m_iNumHiddenNodes + 1];
            for (j = 0; j <= m_iNumHiddenNodes; j++)
            {
                m_arHiddenNodes[j] = new Perceptron(PerceptionType.PERCEPTION_HIDDEN, ActionvationFunction.SIGMOID_FUNCTION);
            }
            m_arHiddenNodes[m_iNumHiddenNodes].SetBiasNode();

            m_arOutputNodes = new Perceptron[m_iNumOutputNodes];
            for (k = 0; k < m_iNumOutputNodes; k++)
            {
                m_arOutputNodes[k] = new Perceptron(PerceptionType.PERCEPTION_OUTPUT, ActionvationFunction.SIGMOID_FUNCTION);
            }

            m_arInputHiddenConn  = new double[m_iNumInputNodes + 1, m_iNumHiddenNodes];
            m_arHiddenOutputConn = new double[m_iNumHiddenNodes + 1, m_iNumOutputNodes];

            Random rand = new Random();

            for (i = 0; i <= m_iNumInputNodes; i++)
            {
                for (j = 0; j < m_iNumHiddenNodes; j++)
                {
                    m_arInputHiddenConn[i, j] = rand.NextDouble();
                }
            }
            for (j = 0; j <= m_iNumHiddenNodes; j++)
            {
                for (k = 0; k < m_iNumOutputNodes; k++)
                {
                    m_arHiddenOutputConn[j, k] = rand.NextDouble();
                }
            }
        }
Exemplo n.º 6
0
        public Neural(int inputNodes, int hiddenNodes, int outputNodes)
        {
            m_iNumInputNodes = inputNodes;
            m_iNumHiddenNodes = hiddenNodes;
            m_iNumOutputNodes = outputNodes;

            int i, j, k;

            m_arInputNodes = new Perceptron[m_iNumInputNodes + 1];
            for (i = 0; i <= m_iNumInputNodes; i++)
            {
                m_arInputNodes[i] = new Perceptron(PerceptionType.PERCEPTION_INPUT, ActionvationFunction.SIGMOID_FUNCTION);
            }
            m_arInputNodes[m_iNumInputNodes].SetBiasNode();

            m_arHiddenNodes = new Perceptron[m_iNumHiddenNodes + 1];
            for (j = 0; j <= m_iNumHiddenNodes; j++)
            {
                m_arHiddenNodes[j] = new Perceptron(PerceptionType.PERCEPTION_HIDDEN, ActionvationFunction.SIGMOID_FUNCTION);
            }
            m_arHiddenNodes[m_iNumHiddenNodes].SetBiasNode();

            m_arOutputNodes = new Perceptron[m_iNumOutputNodes];
            for (k = 0; k < m_iNumOutputNodes; k++)
            {
                m_arOutputNodes[k] = new Perceptron(PerceptionType.PERCEPTION_OUTPUT, ActionvationFunction.SIGMOID_FUNCTION);
            }

            m_arInputHiddenConn = new double[m_iNumInputNodes + 1, m_iNumHiddenNodes];
            m_arHiddenOutputConn = new double[m_iNumHiddenNodes + 1, m_iNumOutputNodes];

            Random rand = new Random();
            for (i = 0; i <= m_iNumInputNodes; i++)
            {
                for (j = 0; j < m_iNumHiddenNodes; j++)
                {
                    m_arInputHiddenConn[i, j] = rand.NextDouble();
                }
            }
            for (j = 0; j <= m_iNumHiddenNodes; j++)
            {
                for (k = 0; k < m_iNumOutputNodes; k++)
                {
                    m_arHiddenOutputConn[j, k] = rand.NextDouble();
                }
            }
        }
Exemplo n.º 7
0
 public Form1()
 {
     InitializeComponent();
     PerceptronInputs = new List <Input>();
     myDrawing        = new MyDrawing();
     // Transfer function 0 == binary, 1 == sigmoid
     _neuralNetwork = new NeuralNetwork.NeuralNetwork(2, 2, 1);
     _perceptron    = new Perceptron(ParseData("AND.txt"));
     //_perceptron.PerceptronNeuron.TrainUntil(_perceptron.TrainingSet, 0.2);
     myDrawing.DrawPerceptron(_perceptron, perceptronPictureBox);
     InitControls();
     refreshNetwork();
     errorChart.Series.Clear();
     //Hopfield
     _hopfield = new Hopfield(5, 7, 50);
     _hopImage = new List <double>();
 }
Exemplo n.º 8
0
        private void button2_Click(object sender, EventArgs e)
        {
            if (openFileDialog1.ShowDialog() == DialogResult.OK)
            {
                string sFileName = openFileDialog1.FileName;
                _perceptron = new Perceptron(ParseData(sFileName));

                PerceptronInputs.Clear();
                for (int i = 0; i < _perceptron.TrainingSet[0].Item1.Length; i++)
                {
                    PerceptronInputs.Add(new Input()
                    {
                        Index = (i + 1), Name = "Input " + (i + 1)
                    });
                }

                comboInputs.DataSource = PerceptronInputs;
                myDrawing.DrawPerceptron(_perceptron, perceptronPictureBox);
            }
        }
Exemplo n.º 9
0
        public void DrawPerceptron(Perceptron perceptron, PictureBox picBox)
        {
            PerceptronHeight = 100;
            PerceptronWidth  = 100;

            var inputCount  = perceptron.TrainingSet[0].Item1.Length;
            var inputHeight = picBox.Height / inputCount;
            var inputSpace  = 50;

            var pic       = new Bitmap(picBox.Height, picBox.Width);
            var g         = Graphics.FromImage(pic);
            var penNeuron = new Pen(Color.Black, 2);
            var penInput  = new Pen(Color.Black, 1);
            var penRect   = new Pen(Color.Black, 1);
            var brush     = Brushes.Orange;

            g.InterpolationMode = System.Drawing.Drawing2D.InterpolationMode.HighQualityBicubic;
            g.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAliasGridFit;
            g.SmoothingMode     = System.Drawing.Drawing2D.SmoothingMode.AntiAlias;

            var centerX    = (pic.Width / 2) - (PerceptronWidth / 2);
            var centerY    = (pic.Height / 2) - (PerceptronHeight / 2);
            var picCenterX = (pic.Width / 2);
            var picCenterY = (pic.Height / 2);

            g.DrawEllipse(penNeuron, centerX, centerY, PerceptronWidth, PerceptronHeight);

            var centerPoint = new PointF(picCenterX, picCenterY);


            //var connectionPoint = new PointF(PerceptronWidth / 10, (pic.Height / 3));
            //var intersectPoint = ClosestIntersection(picCenterX, picCenterY, PerceptronWidth/2, connectionPoint, centerPoint);
            //g.DrawLine(pen, connectionPoint, intersectPoint);
            //connectionPoint = new PointF(PerceptronWidth / 10, pic.Height / 3);
            //intersectPoint = LineIntersectEllipse(centerPoint, connectionPoint, PerceptronHeight, PerceptronWidth);

            // X = 0, Y = 461
            // X = 0; Y = 661
            var linePoints = (inputCount - 1) * inputSpace;
            var inputX     = 50;
            var inputY     = picCenterY - (linePoints / 2);

            var pointA = new PointF();
            var pointB = new PointF();

            #region Inputs
            for (int i = 0; i < perceptron.TrainingSet.Count; i++)
            {
                for (int j = 0; j < perceptron.TrainingSet[i].Item1.Length; j++)
                {
                    pointA = new PointF(inputX, inputY + (inputSpace * j));
                    pointB = ClosestIntersection(picCenterX, picCenterY, PerceptronWidth / 2, pointA, centerPoint);
                    //var rect = new RectangleF(inputX -50, inputY + (inputSpace * j) - (inputSpace / 4), 50, 25);
                    //g.DrawString("Input " + (j+1), new Font("Arial", 10, FontStyle.Regular), Brushes.Black, rect);
                    //g.DrawRectangle(penRect, Rectangle.Round(rect));
                    g.DrawEllipse(penNeuron, inputX - inputSpace, inputY + (inputSpace * j) - (inputSpace / 2), 50, 50);
                    g.DrawString("Input " + (j + 1), new Font("Arial", 8, FontStyle.Regular), Brushes.Black, inputX - 40,
                                 inputY + (inputSpace * j) - (inputSpace / 5));
                    g.DrawLine(penInput, pointA, pointB);
                    g.DrawString("Weight " + (j + 1) + ": " + Math.Round(perceptron.PerceptronNeuron.InputSynapses[j].Weight, 2), new Font("Arial", 8, FontStyle.Regular), Brushes.Black, inputX + (inputSpace / 5), inputY + (inputSpace * j) + (inputSpace / 5));
                    //g.DrawString(value.ToString("0.00"), new Font("Arial", 7), Brushes.Green, X + 5, Y + 10);
                }
            }
            #endregion

            #region Output

            pointA = new PointF(picCenterX + (PerceptronWidth / 2), picCenterY);
            pointB = new PointF(picCenterX + (PerceptronWidth / 2) + 75, picCenterY);
            g.DrawLine(penInput, pointA, pointB);
            g.DrawEllipse(penNeuron, picCenterX + (PerceptronWidth / 2) + 75, picCenterY - (50 / 2), 50, 50);
            g.DrawString("Out: " + perceptron.PerceptronNeuron.Output, new Font("Arial", 8, FontStyle.Regular), Brushes.Black, picCenterX + (PerceptronWidth / 2) + 85,
                         picCenterY - (50 / 6));

            #endregion

            //var pointA = new PointF(inputX, inputY);
            //var pointB = new PointF(inputX, inputY + inputSpace);
            //g.DrawLine(pen, pointA, pointB);
            //pointA = new PointF(25, picCenterY - (PerceptronWidth / 2));
            //pointB = new PointF(25, picCenterY + (PerceptronWidth / 2));
            //g.DrawLine(pen, pointA, pointB);


            picBox.Image = pic;
        }
Exemplo n.º 10
0
        void setup()
        {
            perceptron = new Perceptron(3);

            // generate trainers
            Random random = new Random();
            for (int i = 0; i < trainers.Count(); i++)
            {
                float x = (float)((this.Width * random.NextDouble()) - (this.Width / 2));
                float y = (float)((this.Height * random.NextDouble()) - (this.Height / 2));

                int answer = 1;
                if (y < lineFunction(x))
                    answer = -1;

                trainers[i] = new Trainer(x, y, answer);
            }
        }