Exemplo n.º 1
0
        protected virtual void addRandomPieceOfFood(AgentsEnvironment env)
        {
            int  x       = random.Next(env.Width);
            int  y       = random.Next(env.Height);
            Food newFood = new Food(x, y);

            env.Add(newFood);
        }
Exemplo n.º 2
0
        protected void removeEatenAndCreateNewFood(AgentsEnvironment env, IEnumerable <Food> eatenFood)
        {
            foreach (Food food in eatenFood)
            {
                env.Remove(food);

                addRandomPieceOfFood(env);
            }
        }
Exemplo n.º 3
0
        private List <Food> getFood(AgentsEnvironment env)
        {
            List <Food> food = new List <Food>();

            foreach (Food f in env.getAgents().OfType <Food>())
            {
                food.Add(f);
            }
            return(food);
        }
Exemplo n.º 4
0
        private List <Agent> getFishes(AgentsEnvironment env)
        {
            List <Agent> fishes = new List <Agent>();

            foreach (Agent agent in env.getAgents().OfType <Agent>())
            {
                fishes.Add(agent);
            }
            return(fishes);
        }
Exemplo n.º 5
0
        public virtual void notify(AgentsEnvironment env)
        {
            var eatenFood = getEatenFood(env);

            score += eatenFood.Count;

            LinkedList <Agent> collidedFishes = getCollidedFishes(env);

            score -= collidedFishes.Count * 0.5;

            removeEatenAndCreateNewFood(env, eatenFood);
        }
Exemplo n.º 6
0
        protected LinkedList <Food> getEatenFood(AgentsEnvironment env)
        {
            LinkedList <Food> eatenFood = new LinkedList <Food>();


            foreach (Food food in getFood(env))
            {
                foreach (Agent fish in getFishes(env))
                {
                    double distanceToFood = module(food.X - fish.X, food.Y - fish.Y);
                    if (distanceToFood < minEatDistance)
                    {
                        eatenFood.AddLast(food);
                        break;
                    }
                }
            }
            return(eatenFood);
        }
Exemplo n.º 7
0
        public static double Calculate(OptimizableNeuralNetwork chromosome)
        {
            // TODO maybe, its better to initialize these parameters in constructor
            const int width                 = 200;
            const int height                = 200;
            int       agentsCount           = 10;
            int       foodCount             = 5;
            int       environmentIterations = 50;

            AgentsEnvironment env = new AgentsEnvironment(width, height);

            for (int i = 0; i < agentsCount; i++)
            {
                int    x         = random.Next(width);
                int    y         = random.Next(height);
                double direction = 2 * Math.PI * random.NextDouble();

                NeuralNetworkDrivenAgent agent = new NeuralNetworkDrivenAgent(x, y, direction);
                agent.setBrain(chromosome.Clone() as NeuralNetwork);

                env.Add(agent);
            }

            for (int i = 0; i < foodCount; i++)
            {
                Food food = newPieceOfFood(width, height);
                env.Add(food);
            }

            EatenFoodObserver tournamentListener = new FitnessObserver(width, height);

            env.AgentEvent += tournamentListener.notify;

            for (int i = 0; i < environmentIterations; i++)
            {
                env.timeStep();
            }

            double score = tournamentListener.getScore();

            return(1.0 / score);
        }
Exemplo n.º 8
0
        /**
         * Synchronization prevents from race condition when trying to set new
         * brain, while method "interact" runs <br/>
         * <br/>
         * TODO Maybe consider to use non-blocking technique. But at the moment this
         * simplest solution doesn't cause any overheads
         */
        public override void Interact(AgentsEnvironment env)
        {
            lock (ThisLock)
            {
                var nnInputs = createNnInputs(env);

                activateNeuralNetwork(nnInputs);

                int    neuronsCount = brain.NeuronsCount;
                double deltaAngle   = brain.GetAfterActivationSignal(neuronsCount - 2);
                double deltaSpeed   = brain.GetAfterActivationSignal(neuronsCount - 1);

                deltaSpeed = avoidNaNAndInfinity(deltaSpeed);
                deltaAngle = avoidNaNAndInfinity(deltaAngle);

                Angle += normalizeDeltaAngle(deltaAngle);
                Speed  = normalizeSpeed(Speed + deltaSpeed);

                Move();
            }
        }
Exemplo n.º 9
0
        private LinkedList <Agent> getCollidedFishes(AgentsEnvironment env)
        {
            LinkedList <Agent> collidedFishes = new LinkedList <Agent>();

            List <Agent> allFishes   = getFishes(env);
            int          fishesCount = allFishes.Count;

            for (int i = 0; i < (fishesCount - 1); i++)
            {
                Agent firstFish = allFishes[i];
                for (int j = i + 1; j < fishesCount; j++)
                {
                    Agent  secondFish           = allFishes[j];
                    double distanceToSecondFish = module(firstFish.X - secondFish.X, firstFish.Y - secondFish.Y);
                    if (distanceToSecondFish < maxFishesDistance)
                    {
                        collidedFishes.AddLast(secondFish);
                    }
                }
            }
            return(collidedFishes);
        }
Exemplo n.º 10
0
        protected List <double> createNnInputs(AgentsEnvironment environment)
        {
            // Find nearest food
            Food   nearestFood     = null;
            double nearestFoodDist = double.MaxValue;

            foreach (Food currFood in environment.getAgents().OfType <Food>())
            {
                // agent can see only ahead
                if (this.inSight(currFood))
                {
                    double currFoodDist = distanceTo(currFood);
                    if ((nearestFood == null) || (currFoodDist <= nearestFoodDist))
                    {
                        nearestFood     = currFood;
                        nearestFoodDist = currFoodDist;
                    }
                }
            }

            // Find nearest agent
            Agent  nearestAgent     = null;
            double nearestAgentDist = maxAgentsDistance;

            foreach (Agent currAgent in environment.getAgents().OfType <Agent>())
            {
                // agent can see only ahead
                if ((this != currAgent) && (this.inSight(currAgent)))
                {
                    double currAgentDist = this.distanceTo(currAgent);
                    if (currAgentDist <= nearestAgentDist)
                    {
                        nearestAgent     = currAgent;
                        nearestAgentDist = currAgentDist;
                    }
                }
            }

            var nnInputs = new List <double>();


            if (nearestFood != null)
            {
                double foodDirectionVectorX = nearestFood.X - X;
                double foodDirectionVectorY = nearestFood.Y - Y;

                // left/right cos
                double foodDirectionCosTeta =
                    Math.Sign(pseudoScalarProduct(Rx, Ry, foodDirectionVectorX, foodDirectionVectorY))
                    * cosTeta(Rx, Ry, foodDirectionVectorX, foodDirectionVectorY);

                nnInputs.Add(FOOD);
                nnInputs.Add(nearestFoodDist);
                nnInputs.Add(foodDirectionCosTeta);
            }
            else
            {
                nnInputs.Add(EMPTY);
                nnInputs.Add(0.0);
                nnInputs.Add(0.0);
            }

            if (nearestAgent != null)
            {
                double agentDirectionVectorX = nearestAgent.X - X;
                double agentDirectionVectorY = nearestAgent.Y - Y;

                // left/right cos
                double agentDirectionCosTeta =
                    Math.Sign(pseudoScalarProduct(Rx, Ry, agentDirectionVectorX, agentDirectionVectorY))
                    * cosTeta(Rx, Ry, agentDirectionVectorX, agentDirectionVectorY);

                nnInputs.Add(AGENT);
                nnInputs.Add(nearestAgentDist);
                nnInputs.Add(agentDirectionCosTeta);
            }
            else
            {
                nnInputs.Add(EMPTY);
                nnInputs.Add(0.0);
                nnInputs.Add(0.0);
            }
            return(nnInputs);
        }
Exemplo n.º 11
0
 public abstract void Interact(AgentsEnvironment env);
Exemplo n.º 12
0
 protected void move(AgentsEnvironment env)
 {
     X += -Math.Sin(angle) * speed;
     Y += Math.Cos(angle) * speed;
 }
Exemplo n.º 13
0
 public override void Interact(AgentsEnvironment env)
 {
     move(env);
 }
Exemplo n.º 14
0
            protected void addRandomPieceOfFood(AgentsEnvironment env)
            {
                Food newFood = newPieceOfFood(width, height);

                env.Add(newFood);
            }