Exemplo n.º 1
0
    private static string StringMap(Model.Input inp)
    {
        string s = "";

        for (int i = 0; i < s.Length; i++)
        {
            s = s + s[i] + " ";
        }
        return(s);
    }
Exemplo n.º 2
0
    public void ModelBuilderTest()
    {
        TensorCachingAllocator tca = new TensorCachingAllocator();
        ModelBuilder           mb  = new ModelBuilder();

        Model.Input inputLayer = mb.Input("Input", new int[] { -1, 1, 1, 1 });
        Layer       prevLayer  = null;

        prevLayer            = mb.Dense(MultiLayerPerception.LayerNames.Hidden, inputLayer, tca.Alloc(new TensorShape(1, 1)), tca.Alloc(new TensorShape(1, 1)));
        prevLayer.weights[0] = 1;
        prevLayer.weights[1] = 1;
        Debug.Log(prevLayer.weights.Length + ": " + string.Join(",", prevLayer.weights));
        for (int i = 0; i < prevLayer.datasets.Length; i++)
        {
            Debug.Log(prevLayer.datasets[i].name + ":" + prevLayer.datasets[i].offset);
        }
        prevLayer = mb.Identity("hiddenAct", prevLayer);
        Debug.Log(prevLayer.weights.Length + ": " + string.Join(",", prevLayer.weights));
        prevLayer            = mb.Dense("output", prevLayer, tca.Alloc(new TensorShape(1, 1)), tca.Alloc(new TensorShape(1, 1)));
        prevLayer.weights[0] = 3;
        prevLayer.weights[1] = 5;
        Debug.Log(prevLayer.weights.Length + ": " + string.Join(",", prevLayer.weights));
        prevLayer = mb.Identity("outputActive", prevLayer);
        Debug.Log(prevLayer.weights.Length + ": " + string.Join(",", prevLayer.weights));
        mb.Output(prevLayer);
        IWorker worker = WorkerFactory.CreateWorker(mb.model, WorkerFactory.Device.GPU);
        Tensor  input  = tca.Alloc(new TensorShape(4, 1, 1, 1));

        for (int i = 0; i < 4; i++)
        {
            input[i] = i;
        }
        IWorker ex = worker.Execute(input);

        ex.FlushSchedule(true);
        Tensor output = ex.PeekOutput();

        for (int i = 0; i < 4; i++)
        {
            Debug.Log($"output[{i}] = {output[i]}");
        }
        tca.Dispose();
        ex.Dispose();
        worker.Dispose();
        Debug.Assert(true); // Just getting here is good enough
    }
    private void CreateBarracudaWorker()
    {
        int savedAlphaBetasIndex = 0;

        model            = ModelLoader.Load(nnModel, verbose);
        layerNameToPatch = new List <string>();
        List <Layer> layerList = new List <Layer>(model.layers);

        // Pre-process Network for run-time use
        Layer lastConv = null;

        for (int i = 0; i < layerList.Count; i++)
        {
            Layer layer = layerList[i];

            // Remove Style_Prediction_Network: constant with style, executed once in Setup()
            if (layer.name.Contains("Style_Prediction_Network/"))
            {
                layerList.RemoveAt(i);
                i--;
                continue;
            }

            // Fix Upsample2D size parameters
            if (layer.type == Layer.Type.Upsample2D)
            {
                layer.pool = new[] { 2, 2 };
                //ref model is supposed to be nearest sampling but bilinear scale better when network is applied at lower resoltions
                bool useBilinearUpsampling = internalSetup.forceBilinearUpsample2DInModel || (modelToUse != UsedModel.Reference);
                layer.axis = useBilinearUpsampling ? 1 : -1;
            }

            // Remove Mirror padding layers (not supported, TODO)
            if (layer.name.Contains("reflect_padding"))
            {
                layerList[i + 1].inputs = layer.inputs;
                layerList[i + 1].pad    = layer.pad.ToArray();
                layerList.RemoveAt(i);
                i--;
            }
            else if (layer.type == Layer.Type.Conv2D || layer.type == Layer.Type.Conv2DTrans)
            {
                lastConv = layer;
            }
            else if (layer.type == Layer.Type.Normalization)
            {
                // Manually set alpha/betas from Style_Prediction_Network as scale/bias tensors for InstanceNormalization
                if (layerList[i - 1].type == Layer.Type.StridedSlice)
                {
                    int channels = predictionAlphasBetasData[savedAlphaBetasIndex].Length;
                    layer.datasets = new Layer.DataSet[2];

                    layer.datasets[0].shape  = new TensorShape(1, 1, 1, channels);
                    layer.datasets[0].offset = 0;
                    layer.datasets[0].length = channels;

                    layer.datasets[1].shape  = new TensorShape(1, 1, 1, channels);
                    layer.datasets[1].offset = channels;
                    layer.datasets[1].length = channels;

                    layerNameToPatch.Add(layer.name);

                    float[] data = new float[channels * 2];
                    for (int j = 0; j < data.Length / 2; j++)
                    {
                        data[j] = predictionAlphasBetasData[savedAlphaBetasIndex][j];
                    }
                    for (int j = data.Length / 2; j < data.Length; j++)
                    {
                        data[j] = predictionAlphasBetasData[savedAlphaBetasIndex + 1][j - data.Length / 2];
                    }
                    layer.weights = data;

                    savedAlphaBetasIndex += 2;
                }
                // Else initialize scale/bias tensors of InstanceNormalization to default 1/0
                else
                {
                    int channels = lastConv.datasets[1].shape.channels;
                    layer.datasets = new Layer.DataSet[2];

                    layer.datasets[0].shape  = new TensorShape(1, 1, 1, channels);
                    layer.datasets[0].offset = 0;
                    layer.datasets[0].length = channels;

                    layer.datasets[1].shape  = new TensorShape(1, 1, 1, channels);
                    layer.datasets[1].offset = channels;
                    layer.datasets[1].length = channels;

                    float[] data = new float[channels * 2];
                    for (int j = 0; j < data.Length / 2; j++)
                    {
                        data[j] = 1.0f;
                    }
                    for (int j = data.Length / 2; j < data.Length; j++)
                    {
                        data[j] = 0.0f;
                    }
                    layer.weights = data;
                }
            }
        }

        // Remove Slice layers originally used to get alpha/beta tensors into Style_Network
        for (int i = 0; i < layerList.Count; i++)
        {
            Layer layer = layerList[i];
            if (layer.type == Layer.Type.StridedSlice)
            {
                layerList.RemoveAt(i);
                i--;
            }
        }

        // Fold Relu into instance normalisation
        Dictionary <string, string> reluToInstNorm = new Dictionary <string, string>();

        for (int i = 0; i < layerList.Count; i++)
        {
            Layer layer = layerList[i];
            if (layer.type == Layer.Type.Activation && layer.activation == Layer.Activation.Relu)
            {
                if (layerList[i - 1].type == Layer.Type.Normalization)
                {
                    layerList[i - 1].activation = layer.activation;
                    reluToInstNorm[layer.name]  = layerList[i - 1].name;
                    layerList.RemoveAt(i);
                    i--;
                }
            }
        }
        for (int i = 0; i < layerList.Count; i++)
        {
            Layer layer = layerList[i];
            for (int j = 0; j < layer.inputs.Length; j++)
            {
                if (reluToInstNorm.ContainsKey(layer.inputs[j]))
                {
                    layer.inputs[j] = reluToInstNorm[layer.inputs[j]];
                }
            }
        }

        // Feed first convolution directly with input (no need for normalisation from the model)
        string firstConvName = "StyleNetwork/conv1/convolution_conv1/convolution";
        int    firstConv     = FindLayerIndexByName(layerList, firstConvName);

        layerList[firstConv].inputs = new[] { model.inputs[1].name };

        if (modelToUse == UsedModel.Reference)
        {
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalisation/add"));
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalisation/add/y"));
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalisation/normalized_contentFrames"));
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalisation/normalized_contentFrames/y"));
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalisation/sub"));
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalisation/sub/y"));
        }
        if (modelToUse == UsedModel.RefBut32Channels)
        {
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalized_contentFrames"));
            layerList.RemoveAt(FindLayerIndexByName(layerList, "StyleNetwork/normalized_contentFrames/y"));
        }

        // Remove final model post processing, post process happen in tensor to texture instead
        int postAdd = FindLayerIndexByName(layerList, "StyleNetwork/clamp_0_255/add");

        layerList.RemoveRange(postAdd, 5);

        // Correct wrong output layer list
        model.outputs = new List <string>()
        {
            layerList[postAdd - 1].name
        };

        model.layers = layerList;
        Model.Input input = model.inputs[1];
        input.shape[0] = 0;
        input.shape[1] = 1080;//TODO get framebuffer size rather than hardcoded value
        input.shape[2] = 1920;
        input.shape[3] = 3;
        model.inputs   = new List <Model.Input> {
            model.inputs[1]
        };
        //Create worker and execute it once at target resolution to prime all memory allocation (however in editor resolution can still change at runtime)
        worker = WorkerFactory.CreateWorker(WorkerFactory.ValidateType(internalSetup.workerType), model, verbose);
        Dictionary <string, Tensor> temp = new Dictionary <string, Tensor>();
        var inputTensor = new Tensor(input.shape, input.name);

        temp.Add("frame", inputTensor);
        worker.Execute(temp);
        inputTensor.Dispose();
    }