// Bisection Algorithm for Black Scholes Implied Volatility
        public double BisecBSIV(string PutCall, double S, double K, double rf, double q, double T, double a, double b, double MktPrice, double Tol, int MaxIter)
        {
            BlackScholesPrice BS       = new BlackScholesPrice();
            double            lowCdif  = MktPrice - BS.BlackScholes(S, K, T, rf, q, a, PutCall);
            double            highCdif = MktPrice - BS.BlackScholes(S, K, T, rf, q, b, PutCall);
            double            BSIV     = 0.0;
            double            midP;

            if (lowCdif * highCdif > 0.0)
            {
                BSIV = -1.0;
            }
            else
            {
                for (int x = 0; x <= MaxIter; x++)
                {
                    midP = (a + b) / 2.0;
                    double midCdif = MktPrice - BS.BlackScholes(S, K, T, rf, q, midP, PutCall);
                    if (Math.Abs(midCdif) < Tol)
                    {
                        break;
                    }
                    else
                    {
                        if (midCdif > 0.0)
                        {
                            a = midP;
                        }
                        else
                        {
                            b = midP;
                        }
                    }
                    BSIV = midP;
                }
            }
            return(BSIV);
        }
Exemplo n.º 2
0
        static void Main(string[] args)
        {
            // Classes
            BlackScholesPrice BS   = new BlackScholesPrice();
            BisectionAlgo     BA   = new BisectionAlgo();
            NelderMeadAlgo    NM   = new NelderMeadAlgo();
            ObjectiveFunction OF   = new ObjectiveFunction();
            HestonPriceTD     HPTD = new HestonPriceTD();

            // 32-point Gauss-Laguerre Abscissas and weights
            double[] X = new Double[32];
            double[] W = new Double[32];
            using (TextReader reader = File.OpenText("../../GaussLaguerre32.txt"))
                for (int k = 0; k <= 31; k++)
                {
                    string   text = reader.ReadLine();
                    string[] bits = text.Split(' ');
                    X[k] = double.Parse(bits[0]);
                    W[k] = double.Parse(bits[1]);
                }
            int NT = 4;
            int NK = 13;

            double[,] PutIV = new double[13, 4] {
                { 0.1962, 0.1947, 0.2019, 0.2115 }, { 0.1910, 0.1905, 0.1980, 0.2082 },
                { 0.1860, 0.1861, 0.1943, 0.2057 }, { 0.1810, 0.1812, 0.1907, 0.2021 },
                { 0.1761, 0.1774, 0.1871, 0.2000 }, { 0.1718, 0.1743, 0.1842, 0.1974 },
                { 0.1671, 0.1706, 0.1813, 0.1950 }, { 0.1644, 0.1671, 0.1783, 0.1927 },
                { 0.1645, 0.1641, 0.1760, 0.1899 }, { 0.1661, 0.1625, 0.1743, 0.1884 },
                { 0.1701, 0.1602, 0.1726, 0.1862 }, { 0.1755, 0.1610, 0.1716, 0.1846 },
                { 0.1796, 0.1657, 0.1724, 0.1842 }
            };
            double[] K = new double[13] {
                124.0, 125.0, 126.0, 127.0, 128.0, 129.0, 130.0, 131.0, 132.0, 133.0, 134.0, 135.0, 136.0,
            };
            double[] T = new double[4] {
                0.1014, 0.1973, 0.3699, 0.6192
            };
            string[,] PutCall  = new string[13, 4];
            double[,] MktPrice = new double[13, 4];
            double Spot         = 129.14;
            double r            = 0.0010;
            double q            = 0.0068;
            int    trap         = 1;
            int    LossFunction = 2;

            for (int t = 0; t <= NT - 1; t++)
            {
                for (int k = 0; k <= NK - 1; k++)
                {
                    PutCall[k, t]  = "P";
                    MktPrice[k, t] = BS.BlackScholes(Spot, K[k], T[t], r, q, PutIV[k, t], PutCall[k, t]);
                }
            }

            // Create the maturity increments
            double[] tau = new double[4];
            tau[0] = T[0];
            for (int t = 1; t <= NT - 1; t++)
            {
                tau[t] = T[t] - T[t - 1];
            }

            // Starting values and upper bounds
            double e = 1e-5;

            double[] lb = new double[5] {
                e, e, e, e, -0.999
            };                                                          // Lower bound on the estimates
            double[] ub = new double[5] {
                20.0, 2.0, 2.0, 3.0, 0.999
            };                                                          // Upper bound on the estimates

            // Starting values (vertices) in vector form.  Add random increment about each starting value
            int    N      = 5;
            double kappaS = 4.0;
            double thetaS = 0.1;
            double sigmaS = 1.5;
            double v0S    = 0.04;
            double rhoS   = -0.30;

            double[,] s = new double[N, N + 1];
            for (int j = 0; j <= N; j++)
            {
                s[0, j] = kappaS + BA.RandomNum(-0.01, 0.01);
                s[1, j] = thetaS + BA.RandomNum(-0.01, 0.01);
                s[2, j] = sigmaS + BA.RandomNum(-0.01, 0.01);
                s[3, j] = v0S + BA.RandomNum(-0.01, 0.01);
                s[4, j] = rhoS + BA.RandomNum(-0.01, 0.01);
            }

            // Arrays for old maturities and parameters, and current parameters (old parameters, but stacked)
            ArrayList OldTau = new ArrayList();

            double[,] param0  = new double[NT - 1, 5];
            double[,] paramTD = new double[NT, 5];

            // Nelder Mead settings
            int    MaxIters  = 1000;
            double Tolerance = 1e-5;

            // Market data
            MktData data = new MktData();

            double[] MKIV = new double[NK];
            double[] MKPR = new double[NK];
            string[] PC   = new string[NK];

            // Step-by-step parameter estimates
            double[] B            = new double[6];
            double[] ObjectiveFun = new double[NT];
            double[] NumIteration = new double[NT];

            // First maturity parameter estimates ===================================================================
            double[] tau0 = { 0.0 };
            for (int k = 0; k <= NK - 1; k++)
            {
                MKIV[k] = PutIV[k, 0];
                MKPR[k] = MktPrice[k, 0];
                PC[k]   = PutCall[k, 0];
            }
            data.MktIV    = MKIV;
            data.PutCall  = PC;
            data.MktPrice = MKPR;
            B             = NM.NelderMead(OF.f, N, MaxIters, Tolerance, s, tau[0], tau0, param0, data, Spot, K, r, q, trap, X, W, LossFunction, lb, ub);
            Console.WriteLine("Finished parameter estimate set 1");
            for (int k = 0; k <= 4; k++)
            {
                paramTD[0, k] = B[k];
            }
            ObjectiveFun[0] = B[5];
            NumIteration[0] = B[6];

            // Remaining Maturity estimates and updated starting values ==================================================
            for (int mat = 1; mat <= NT - 1; mat++)
            {
                OldTau.Add(tau[mat - 1]);
                for (int k = 0; k <= 4; k++)
                {
                    param0[mat - 1, k] = B[k];
                }
                for (int k = 0; k <= NK - 1; k++)
                {
                    MKIV[k] = PutIV[k, mat];
                    MKPR[k] = MktPrice[k, mat];
                    PC[k]   = PutCall[k, mat];
                }
                data.MktIV    = MKIV;
                data.PutCall  = PC;
                data.MktPrice = MKPR;
                for (int j = 0; j <= N; j++)
                {
                    s[0, j] = B[0] + BA.RandomNum(-0.01, 0.01);
                    s[1, j] = B[1] + BA.RandomNum(-0.01, 0.01);
                    s[2, j] = B[2] + BA.RandomNum(-0.01, 0.01);
                    s[3, j] = B[3] + BA.RandomNum(-0.01, 0.01);
                    s[4, j] = B[4] + BA.RandomNum(-0.01, 0.01);
                }
                B = NM.NelderMead(OF.f, N, MaxIters, Tolerance, s, tau[mat], tau0, param0, data, Spot, K, r, q, trap, X, W, LossFunction, lb, ub);
                Console.WriteLine("Finished parameter estimate set {0}", mat + 1);
                for (int k = 0; k <= 4; k++)
                {
                    paramTD[mat, k] = B[k];
                }
                ObjectiveFun[mat] = B[5];
                NumIteration[mat] = B[6];
            }

            // Fit the prices and implied volatilities ====================================================================
            // Bisection algorithm settings
            double a       = 0.001;
            double b       = 5.0;
            double Tol     = 1e-5;
            int    MaxIter = 5000;

            ArrayList OldTau00 = new ArrayList();

            double[] tau00 = { 0.0 };
            double[,] ModelPrice = new double[NK, NT];
            double[,] ModelIV    = new double[NK, NT];
            Array.Clear(param0, 0, 15);

            // First maturity
            HParam param = new HParam();

            param.kappa = paramTD[0, 0];
            param.theta = paramTD[0, 1];
            param.sigma = paramTD[0, 2];
            param.v0    = paramTD[0, 3];
            param.rho   = paramTD[0, 4];
            for (int k = 0; k <= NK - 1; k++)
            {
                ModelPrice[k, 0] = HPTD.MNPriceGaussLaguerre(param, param0, tau[0], tau00, Spot, K[k], r, q, PutCall[k, 0], trap, X, W);
                ModelIV[k, 0]    = BA.BisecBSIV(PutCall[k, 0], Spot, K[k], r, q, T[0], a, b, ModelPrice[k, 0], Tol, MaxIter);
            }

            // Remaining maturity
            for (int t = 1; t <= NT - 1; t++)
            {
                OldTau00.Add(tau[t - 1]);
                param.kappa = paramTD[t, 0];
                param.theta = paramTD[t, 1];
                param.sigma = paramTD[t, 2];
                param.v0    = paramTD[t, 3];
                param.rho   = paramTD[t, 4];
                for (int j = 0; j <= 4; j++)
                {
                    param0[t - 1, j] = paramTD[t - 1, j];
                }
                for (int k = 0; k <= NK - 1; k++)
                {
                    ModelPrice[k, t] = HPTD.MNPriceGaussLaguerre(param, param0, tau[t], tau00, Spot, K[k], r, q, PutCall[k, t], trap, X, W);
                    ModelIV[k, t]    = BA.BisecBSIV(PutCall[k, t], Spot, K[k], r, q, T[t], a, b, ModelPrice[k, t], Tol, MaxIter);
                }
            }

            // Mean Square Implied Volatility Error
            double Error = 0.0;

            for (int t = 0; t <= NT - 1; t++)
            {
                for (int k = 0; k <= NK - 1; k++)
                {
                    Error += Math.Pow(ModelIV[k, t] - PutIV[k, t], 2);
                }
            }

            Error /= (Convert.ToDouble(NT) * Convert.ToDouble(NK));

            // Output the estimation result
            Console.WriteLine("-----------------------------------------------------------------------------");
            Console.WriteLine("Market/Model implied volatilities");
            Console.WriteLine("    Mat1       Mat2       Mat3       Mat4");
            for (int k = 0; k <= NK - 1; k++)
            {
                Console.WriteLine("--------------------------------------------- Strike {0} Market/Model", K[k]);
                Console.WriteLine("{0,10:F4} {1,10:F4} {2,10:F4} {3,10:F4}", PutIV[k, 0], PutIV[k, 1], PutIV[k, 2], PutIV[k, 3]);
                Console.WriteLine("{0,10:F4} {1,10:F4} {2,10:F4} {3,10:F4}", ModelIV[k, 0], ModelIV[k, 1], ModelIV[k, 2], ModelIV[k, 3]);
            }
            Console.WriteLine("-----------------------------------------------------------------------------");
            Console.WriteLine("Model Price ");
            for (int k = 0; k <= NK - 1; k++)
            {
                Console.WriteLine("{0,10:0} {1,10:F4} {2,10:F4} {3,10:F4} {4,10:F4}", K[k], ModelPrice[k, 0], ModelPrice[k, 1], ModelPrice[k, 2], ModelPrice[k, 3]);
            }
            Console.WriteLine("-----------------------------------------------------------------------------");
            Console.WriteLine("Results of time dependent parameter estimation");
            Console.WriteLine("  ");
            Console.WriteLine("Maturity   kappa   theta   sigma   v0       rho     ObjecFun  NumIterations");
            Console.WriteLine("-----------------------------------------------------------------------------");
            for (int t = 0; t <= NT - 1; t++)
            {
                Console.WriteLine("{0} {1,10:F4} {2,7:F4} {3,7:F4} {4,7:F4} {5,8:F4} {6,8:F4} {7,7:0}",
                                  T[t], paramTD[t, 0], paramTD[t, 1], paramTD[t, 2], paramTD[t, 3], paramTD[t, 4], ObjectiveFun[t], NumIteration[t]);
            }
            Console.WriteLine("-----------------------------------------------------------------------------");
            Console.WriteLine("IVMSE from time dependent estimates {0,10:E5}", Error);
            Console.WriteLine("-----------------------------------------------------------------------------");
        }