Exemplo n.º 1
0
        public static CommonOutputs.MacroOutput <Output> TrainTest(
            IHostEnvironment env,
            Arguments input,
            EntryPointNode node)
        {
            // Create default pipeline ID if one not given.
            input.PipelineId = input.PipelineId ?? Guid.NewGuid().ToString("N");

            // Parse the subgraph.
            var subGraphRunContext = new RunContext(env);
            var subGraphNodes      = EntryPointNode.ValidateNodes(env, subGraphRunContext, input.Nodes, node.Catalog);

            // Change the subgraph to use the training data as input.
            var             varName = input.Inputs.Data.VarName;
            VariableBinding transformModelVarName = null;

            if (input.TransformModel != null)
            {
                transformModelVarName = node.GetInputVariable(nameof(input.TransformModel));
            }

            if (!subGraphRunContext.TryGetVariable(varName, out var dataVariable))
            {
                throw env.Except($"Invalid variable name '{varName}'.");
            }
            var trainingVar = node.GetInputVariable(nameof(input.TrainingData));

            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.RenameInputVariable(dataVariable.Name, trainingVar);
            }
            subGraphRunContext.RemoveVariable(dataVariable);

            // Change the subgraph to use the model variable as output.
            varName = input.Outputs.Model.VarName;
            if (!subGraphRunContext.TryGetVariable(varName, out dataVariable))
            {
                throw env.Except($"Invalid variable name '{varName}'.");
            }
            string outputVarName = node.GetOutputVariableName(nameof(Output.PredictorModel));

            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.RenameOutputVariable(dataVariable.Name, outputVarName);
            }
            subGraphRunContext.RemoveVariable(dataVariable);

            // Move the variables from the subcontext to the main context.
            node.Context.AddContextVariables(subGraphRunContext);

            // Change all the subgraph nodes to use the main context.
            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.SetContext(node.Context);
            }

            // Testing using test data set
            var testingVar = node.GetInputVariable(nameof(input.TestingData));
            var exp        = new Experiment(env);

            //combine the predictor model with any potential transfrom model passed from the outer graph
            if (transformModelVarName != null && transformModelVarName.VariableName != null)
            {
                var modelCombine = new ML.Transforms.TwoHeterogeneousModelCombiner
                {
                    TransformModel = { VarName = transformModelVarName.VariableName },
                    PredictorModel = { VarName = outputVarName }
                };

                var modelCombineOutput = exp.Add(modelCombine);
                outputVarName = modelCombineOutput.PredictorModel.VarName;
            }

            // Add the scoring node for testing.
            var scoreNode = new ML.Transforms.DatasetScorer
            {
                Data           = { VarName = testingVar.ToJson() },
                PredictorModel = { VarName = outputVarName }
            };
            var scoreNodeOutput = exp.Add(scoreNode);

            subGraphNodes.AddRange(EntryPointNode.ValidateNodes(env, node.Context, exp.GetNodes(), node.Catalog));

            // Do not double-add previous nodes.
            exp.Reset();

            // REVIEW: we need to extract the proper label column name here to pass to the evaluators.
            // This is where you would add code to do it.
            var settings = new MacroUtils.EvaluatorSettings
            {
                LabelColumn = DefaultColumnNames.Label
            };

            string outVariableName;

            if (input.IncludeTrainingMetrics)
            {
                // Add the scoring node for training.
                var scoreNodeTraining = new ML.Transforms.DatasetScorer
                {
                    Data           = { VarName = trainingVar.ToJson() },
                    PredictorModel = { VarName = outputVarName }
                };
                var scoreNodeTrainingOutput = exp.Add(scoreNodeTraining);
                subGraphNodes.AddRange(EntryPointNode.ValidateNodes(env, node.Context, exp.GetNodes(), node.Catalog));

                // Do not double-add previous nodes.
                exp.Reset();

                // Add the evaluator node for training.
                var evalInputOutputTraining = MacroUtils.GetEvaluatorInputOutput(input.Kind, settings);
                var evalNodeTraining        = evalInputOutputTraining.Item1;
                var evalOutputTraining      = evalInputOutputTraining.Item2;
                evalNodeTraining.Data.VarName = scoreNodeTrainingOutput.ScoredData.VarName;

                if (node.OutputMap.TryGetValue(nameof(Output.TrainingWarnings), out outVariableName))
                {
                    evalOutputTraining.Warnings.VarName = outVariableName;
                }
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingOverallMetrics), out outVariableName))
                {
                    evalOutputTraining.OverallMetrics.VarName = outVariableName;
                }
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingPerInstanceMetrics), out outVariableName))
                {
                    evalOutputTraining.PerInstanceMetrics.VarName = outVariableName;
                }
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingConfusionMatrix), out outVariableName) &&
                    evalOutputTraining is CommonOutputs.IClassificationEvaluatorOutput eoTraining)
                {
                    eoTraining.ConfusionMatrix.VarName = outVariableName;
                }

                exp.Add(evalNodeTraining, evalOutputTraining);
                subGraphNodes.AddRange(EntryPointNode.ValidateNodes(env, node.Context, exp.GetNodes(), node.Catalog));
            }

            // Do not double-add previous nodes.
            exp.Reset();

            // Add the evaluator node for testing.
            var evalInputOutput = MacroUtils.GetEvaluatorInputOutput(input.Kind, settings);
            var evalNode        = evalInputOutput.Item1;
            var evalOutput      = evalInputOutput.Item2;

            evalNode.Data.VarName = scoreNodeOutput.ScoredData.VarName;

            if (node.OutputMap.TryGetValue(nameof(Output.Warnings), out outVariableName))
            {
                evalOutput.Warnings.VarName = outVariableName;
            }
            if (node.OutputMap.TryGetValue(nameof(Output.OverallMetrics), out outVariableName))
            {
                evalOutput.OverallMetrics.VarName = outVariableName;
            }
            if (node.OutputMap.TryGetValue(nameof(Output.PerInstanceMetrics), out outVariableName))
            {
                evalOutput.PerInstanceMetrics.VarName = outVariableName;
            }
            if (node.OutputMap.TryGetValue(nameof(Output.ConfusionMatrix), out outVariableName) &&
                evalOutput is CommonOutputs.IClassificationEvaluatorOutput eo)
            {
                eo.ConfusionMatrix.VarName = outVariableName;
            }

            exp.Add(evalNode, evalOutput);
            subGraphNodes.AddRange(EntryPointNode.ValidateNodes(env, node.Context, exp.GetNodes(), node.Catalog));

            // Marks as an atomic unit that can be run in
            // a distributed fashion.
            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.StageId = input.PipelineId;
            }

            return(new CommonOutputs.MacroOutput <Output>()
            {
                Nodes = subGraphNodes
            });
        }
        public static CommonOutputs.MacroOutput <Output> TrainTest(
            IHostEnvironment env,
            Arguments input,
            EntryPointNode node)
        {
            // Create default pipeline ID if one not given.
            input.PipelineId = input.PipelineId ?? Guid.NewGuid().ToString("N");

            // Parse the subgraph.
            var subGraphRunContext = new RunContext(env);
            var subGraphNodes      = EntryPointNode.ValidateNodes(env, subGraphRunContext, input.Nodes, label: input.LabelColumn,
                                                                  input.GroupColumn.IsExplicit ? input.GroupColumn.Value : null,
                                                                  input.WeightColumn.IsExplicit ? input.WeightColumn.Value : null,
                                                                  input.NameColumn.IsExplicit ? input.NameColumn.Value : null);

            // Change the subgraph to use the training data as input.
            var             varName = input.Inputs.Data.VarName;
            VariableBinding transformModelVarName = null;

            if (input.TransformModel != null)
            {
                transformModelVarName = node.GetInputVariable(nameof(input.TransformModel));
            }

            if (!subGraphRunContext.TryGetVariable(varName, out var dataVariable))
            {
                throw env.Except($"Invalid variable name '{varName}'.");
            }
            var trainingVar = node.GetInputVariable(nameof(input.TrainingData));

            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.RenameInputVariable(dataVariable.Name, trainingVar);
            }
            subGraphRunContext.RemoveVariable(dataVariable);

            // Change the subgraph to use the model variable as output.
            varName = input.Outputs.PredictorModel.VarName;
            if (!subGraphRunContext.TryGetVariable(varName, out dataVariable))
            {
                throw env.Except($"Invalid variable name '{varName}'.");
            }

            string predictorModelVarName = node.GetOutputVariableName(nameof(Output.PredictorModel));

            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.RenameOutputVariable(dataVariable.Name, predictorModelVarName);
            }
            subGraphRunContext.RemoveVariable(dataVariable);

            // Move the variables from the subcontext to the main context.
            node.Context.AddContextVariables(subGraphRunContext);

            // Change all the subgraph nodes to use the main context.
            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.SetContext(node.Context);
            }

            // Testing using test data set
            var testingVar = node.GetInputVariable(nameof(input.TestingData));
            //var exp = new Experiment(env);

            Dictionary <string, List <ParameterBinding> >  inputBindingMap;
            Dictionary <ParameterBinding, VariableBinding> inputMap;
            ParameterBinding            paramBinding;
            Dictionary <string, string> outputMap;

            //combine the predictor model with any potential transfrom model passed from the outer graph
            if (transformModelVarName != null && transformModelVarName.VariableName != null)
            {
                var combineArgs = new ModelOperations.SimplePredictorModelInput();
                inputBindingMap = new Dictionary <string, List <ParameterBinding> >();
                inputMap        = new Dictionary <ParameterBinding, VariableBinding>();

                var inputTransformModel = new SimpleVariableBinding(transformModelVarName.VariableName);
                var inputPredictorModel = new SimpleVariableBinding(predictorModelVarName);
                paramBinding = new SimpleParameterBinding(nameof(combineArgs.TransformModel));
                inputBindingMap.Add(nameof(combineArgs.TransformModel), new List <ParameterBinding>()
                {
                    paramBinding
                });
                inputMap.Add(paramBinding, inputTransformModel);
                paramBinding = new SimpleParameterBinding(nameof(combineArgs.PredictorModel));
                inputBindingMap.Add(nameof(combineArgs.PredictorModel), new List <ParameterBinding>()
                {
                    paramBinding
                });
                inputMap.Add(paramBinding, inputPredictorModel);
                outputMap = new Dictionary <string, string>();

                var combineNodeOutputPredictorModel = new Var <PredictorModel>();
                predictorModelVarName = combineNodeOutputPredictorModel.VarName;
                outputMap.Add(nameof(ModelOperations.PredictorModelOutput.PredictorModel), combineNodeOutputPredictorModel.VarName);
                EntryPointNode combineNode = EntryPointNode.Create(env, "Transforms.TwoHeterogeneousModelCombiner", combineArgs,
                                                                   node.Context, inputBindingMap, inputMap, outputMap);
                subGraphNodes.Add(combineNode);
            }

            // Add the scoring node for testing.
            var args = new ScoreModel.Input();

            inputBindingMap = new Dictionary <string, List <ParameterBinding> >();
            inputMap        = new Dictionary <ParameterBinding, VariableBinding>();
            paramBinding    = new SimpleParameterBinding(nameof(args.Data));
            inputBindingMap.Add(nameof(args.Data), new List <ParameterBinding>()
            {
                paramBinding
            });
            inputMap.Add(paramBinding, testingVar);
            var scoreNodeInputPredictorModel = new SimpleVariableBinding(predictorModelVarName);

            paramBinding = new SimpleParameterBinding(nameof(args.PredictorModel));
            inputBindingMap.Add(nameof(args.PredictorModel), new List <ParameterBinding>()
            {
                paramBinding
            });
            inputMap.Add(paramBinding, scoreNodeInputPredictorModel);

            var scoreNodeOutputScoredData       = new Var <IDataView>();
            var scoreNodeOutputScoringTransform = new Var <TransformModel>();

            outputMap = new Dictionary <string, string>();
            outputMap.Add(nameof(ScoreModel.Output.ScoredData), scoreNodeOutputScoredData.VarName);
            outputMap.Add(nameof(ScoreModel.Output.ScoringTransform), scoreNodeOutputScoringTransform.VarName);

            EntryPointNode scoreNode = EntryPointNode.Create(env, "Transforms.DatasetScorer", args,
                                                             node.Context, inputBindingMap, inputMap, outputMap);

            subGraphNodes.Add(scoreNode);
            var evalDataVarName = scoreNodeOutputScoredData.VarName;

            // REVIEW: add similar support for FeatureColumn.
            var settings = new MacroUtils.EvaluatorSettings
            {
                LabelColumn  = input.LabelColumn,
                WeightColumn = input.WeightColumn.IsExplicit ? input.WeightColumn.Value : null,
                GroupColumn  = input.GroupColumn.IsExplicit ? input.GroupColumn.Value : null,
                NameColumn   = input.NameColumn.IsExplicit ? input.NameColumn.Value : null
            };

            if (input.IncludeTrainingMetrics)
            {
                string evalTrainingDataVarName;
                args            = new ScoreModel.Input();
                inputBindingMap = new Dictionary <string, List <ParameterBinding> >();
                inputMap        = new Dictionary <ParameterBinding, VariableBinding>();
                paramBinding    = new SimpleParameterBinding(nameof(args.Data));
                inputBindingMap.Add(nameof(args.Data), new List <ParameterBinding>()
                {
                    paramBinding
                });
                inputMap.Add(paramBinding, trainingVar);
                scoreNodeInputPredictorModel = new SimpleVariableBinding(predictorModelVarName);
                paramBinding = new SimpleParameterBinding(nameof(args.PredictorModel));
                inputBindingMap.Add(nameof(args.PredictorModel), new List <ParameterBinding>()
                {
                    paramBinding
                });
                inputMap.Add(paramBinding, scoreNodeInputPredictorModel);

                scoreNodeOutputScoredData       = new Var <IDataView>();
                scoreNodeOutputScoringTransform = new Var <TransformModel>();
                outputMap = new Dictionary <string, string>();
                outputMap.Add(nameof(ScoreModel.Output.ScoredData), scoreNodeOutputScoredData.VarName);
                outputMap.Add(nameof(ScoreModel.Output.ScoringTransform), scoreNodeOutputScoringTransform.VarName);

                scoreNode = EntryPointNode.Create(env, "Transforms.DatasetScorer", args,
                                                  node.Context, inputBindingMap, inputMap, outputMap);
                subGraphNodes.Add(scoreNode);
                evalTrainingDataVarName = scoreNodeOutputScoredData.VarName;

                // Add the evaluator node for training.
                var evalTrainingArgs = MacroUtils.GetEvaluatorArgs(input.Kind, out var evalTrainingEntryPointName, settings);
                inputBindingMap = new Dictionary <string, List <ParameterBinding> >();
                inputMap        = new Dictionary <ParameterBinding, VariableBinding>();
                var evalTrainingNodeInputData = new SimpleVariableBinding(evalTrainingDataVarName);
                paramBinding = new SimpleParameterBinding(nameof(evalTrainingArgs.Data));
                inputBindingMap.Add(nameof(evalTrainingArgs.Data), new List <ParameterBinding>()
                {
                    paramBinding
                });
                inputMap.Add(paramBinding, evalTrainingNodeInputData);

                outputMap = new Dictionary <string, string>();
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingWarnings), out var outTrainingVariableName))
                {
                    outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.Warnings), outTrainingVariableName);
                }
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingOverallMetrics), out outTrainingVariableName))
                {
                    outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.OverallMetrics), outTrainingVariableName);
                }
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingPerInstanceMetrics), out outTrainingVariableName))
                {
                    outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.PerInstanceMetrics), outTrainingVariableName);
                }
                if (node.OutputMap.TryGetValue(nameof(Output.TrainingConfusionMatrix), out outTrainingVariableName))
                {
                    outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.ConfusionMatrix), outTrainingVariableName);
                }
                EntryPointNode evalTrainingNode = EntryPointNode.Create(env, evalTrainingEntryPointName, evalTrainingArgs, node.Context, inputBindingMap, inputMap, outputMap);
                subGraphNodes.Add(evalTrainingNode);
            }

            // Add the evaluator node for testing.
            var evalArgs = MacroUtils.GetEvaluatorArgs(input.Kind, out var evalEntryPointName, settings);

            inputBindingMap = new Dictionary <string, List <ParameterBinding> >();
            inputMap        = new Dictionary <ParameterBinding, VariableBinding>();
            var evalNodeInputData = new SimpleVariableBinding(evalDataVarName);

            paramBinding = new SimpleParameterBinding(nameof(evalArgs.Data));
            inputBindingMap.Add(nameof(evalArgs.Data), new List <ParameterBinding>()
            {
                paramBinding
            });
            inputMap.Add(paramBinding, evalNodeInputData);

            outputMap = new Dictionary <string, string>();
            if (node.OutputMap.TryGetValue(nameof(Output.Warnings), out var outVariableName))
            {
                outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.Warnings), outVariableName);
            }
            if (node.OutputMap.TryGetValue(nameof(Output.OverallMetrics), out outVariableName))
            {
                outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.OverallMetrics), outVariableName);
            }
            if (node.OutputMap.TryGetValue(nameof(Output.PerInstanceMetrics), out outVariableName))
            {
                outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.PerInstanceMetrics), outVariableName);
            }
            if (node.OutputMap.TryGetValue(nameof(Output.ConfusionMatrix), out outVariableName))
            {
                outputMap.Add(nameof(CommonOutputs.ClassificationEvaluateOutput.ConfusionMatrix), outVariableName);
            }
            EntryPointNode evalNode = EntryPointNode.Create(env, evalEntryPointName, evalArgs, node.Context, inputBindingMap, inputMap, outputMap);

            subGraphNodes.Add(evalNode);

            // Marks as an atomic unit that can be run in
            // a distributed fashion.
            foreach (var subGraphNode in subGraphNodes)
            {
                subGraphNode.StageId = input.PipelineId;
            }

            return(new CommonOutputs.MacroOutput <Output>()
            {
                Nodes = subGraphNodes
            });
        }