private (Pipeline, ColumnInferenceResults) GetMockedOvaPipelineAndInference()
        {
            if (_mockedOvaPipeline == null)
            {
                MLContext context = new MLContext();
                // same learners with different hyperparameters
                var hyperparams1 = new Microsoft.ML.AutoML.ParameterSet(new List <Microsoft.ML.AutoML.IParameterValue>()
                {
                    new LongParameterValue("NumLeaves", 2)
                });
                var trainer1    = new SuggestedTrainer(context, new FastForestOvaExtension(), new ColumnInformation(), hyperparams1);
                var transforms1 = new List <SuggestedTransform>()
                {
                    ColumnConcatenatingExtension.CreateSuggestedTransform(context, new[] { "In" }, "Out")
                };
                var inferredPipeline1 = new SuggestedPipeline(transforms1, new List <SuggestedTransform>(), trainer1, context, true);

                this._mockedOvaPipeline = inferredPipeline1.ToPipeline();
                var textLoaderArgs = new TextLoader.Options()
                {
                    Columns = new[] {
                        new TextLoader.Column("Label", DataKind.Boolean, 0),
                        new TextLoader.Column("col1", DataKind.Single, 1),
                        new TextLoader.Column("col2", DataKind.Single, 0),
                        new TextLoader.Column("col3", DataKind.String, 0),
                        new TextLoader.Column("col4", DataKind.Int32, 0),
                        new TextLoader.Column("col5", DataKind.UInt32, 0),
                    },
                    AllowQuoting = true,
                    AllowSparse  = true,
                    HasHeader    = true,
                    Separators   = new[] { ',' }
                };


                this._columnInference = new ColumnInferenceResults()
                {
                    TextLoaderOptions = textLoaderArgs,
                    ColumnInformation = new ColumnInformation()
                    {
                        LabelColumnName = "Label"
                    }
                };
            }
            return(_mockedOvaPipeline, _columnInference);
        }
Exemplo n.º 2
0
        public static float[] ParameterSetAsFloatArray(IValueGenerator[] sweepParams, ParameterSet ps, bool expandCategoricals = true)
        {
            Runtime.Contracts.Assert(ps.Count == sweepParams.Length);

            var result = new List <float>();

            for (int i = 0; i < sweepParams.Length; i++)
            {
                // This allows us to query possible values of this parameter.
                var sweepParam = sweepParams[i];

                // This holds the actual value for this parameter, chosen in this parameter set.
                var pset = ps[sweepParam.Name];
                Runtime.Contracts.Assert(pset != null);

                var parameterDiscrete = sweepParam as DiscreteValueGenerator;
                if (parameterDiscrete != null)
                {
                    int hotIndex = -1;
                    for (int j = 0; j < parameterDiscrete.Count; j++)
                    {
                        if (parameterDiscrete[j].Equals(pset))
                        {
                            hotIndex = j;
                            break;
                        }
                    }
                    Runtime.Contracts.Assert(hotIndex >= 0);

                    if (expandCategoricals)
                    {
                        for (int j = 0; j < parameterDiscrete.Count; j++)
                        {
                            result.Add(j == hotIndex ? 1 : 0);
                        }
                    }
                    else
                    {
                        result.Add(hotIndex);
                    }
                }
                else if (sweepParam is LongValueGenerator lvg)
                {
                    var longValue = GetIfIParameterValueOfT <long>(pset) ?? long.Parse(pset.ValueText, CultureInfo.InvariantCulture);
                    // Normalizing all numeric parameters to [0,1] range.
                    result.Add(lvg.NormalizeValue(new LongParameterValue(pset.Name, longValue)));
                }
                else if (sweepParam is FloatValueGenerator fvg)
                {
                    var floatValue = GetIfIParameterValueOfT <float>(pset) ?? float.Parse(pset.ValueText, CultureInfo.InvariantCulture);
                    // Normalizing all numeric parameters to [0,1] range.
                    result.Add(fvg.NormalizeValue(new FloatParameterValue(pset.Name, floatValue)));
                }
                else
                {
                    throw new InvalidOperationException("Smart sweeper can only sweep over discrete and numeric parameters");
                }
            }

            return(result.ToArray());
        }
Exemplo n.º 3
0
 public RunResult(ParameterSet parameterSet, Double metricValue, bool isMetricMaximizing)
 {
     _parameterSet       = parameterSet;
     _metricValue        = metricValue;
     _isMetricMaximizing = isMetricMaximizing;
 }
Exemplo n.º 4
0
 public void SetHyperparamValues(ParameterSet hyperParamSet)
 {
     HyperParamSet = hyperParamSet;
     PropagateParamSetValues();
 }
Exemplo n.º 5
0
 protected static bool AlreadyGenerated(ParameterSet paramSet, ISet <ParameterSet> previousRuns)
 {
     return(previousRuns.Contains(paramSet));
 }