Exemplo n.º 1
0
        private static ColumnInferenceResult InferColumns(MLContext context,
                                                          TextFileSample sample, Func <TextLoader, IDataView> createDataView, string label,
                                                          bool hasHeader, string separator, bool?isQuoted, bool?isSparse)
        {
            var splitInference  = InferSplit(sample, separator, isQuoted, isSparse);
            var typeInference   = InferColumnTypes(context, sample, splitInference);
            var typedLoaderArgs = new TextLoader.Arguments
            {
                Column       = ColumnTypeInference.GenerateLoaderColumns(typeInference.Columns),
                Separator    = splitInference.Separator,
                AllowSparse  = splitInference.AllowSparse,
                AllowQuoting = splitInference.AllowQuote,
                HasHeader    = hasHeader
            };
            var textLoader = context.Data.CreateTextReader(typedLoaderArgs);
            var dataView   = createDataView(textLoader);

            var purposeInferenceResult = PurposeInference.InferPurposes(context, dataView, label);

            // infer column grouping and generate column names
            var groupingResult = ColumnGroupingInference.InferGroupingAndNames(context, hasHeader,
                                                                               typeInference.Columns, purposeInferenceResult);

            // build result objects & return
            var inferredColumns = groupingResult.Select(c => (c.GenerateTextLoaderColumn(), c.Purpose)).ToArray();

            return(new ColumnInferenceResult(inferredColumns, splitInference.AllowQuote, splitInference.AllowSparse, splitInference.Separator, hasHeader));
        }
Exemplo n.º 2
0
 public static ColumnInferenceResult InferColumns(MLContext context, string path, string label, 
     bool hasHeader = false, string separator = null)
 {
     var sample = TextFileSample.CreateFromFullFile(path);
     Func<TextLoader, IDataView> createDataView = (textLoader) => 
     {
         return textLoader.Read(path); 
     };
     return InferColumns(context, sample, createDataView, label, hasHeader, separator);
 }
Exemplo n.º 3
0
        private static TextFileContents.ColumnSplitResult InferSplit(TextFileSample sample, string separator)
        {
            var separatorCandidates = separator == null ? TextFileContents.DefaultSeparators : new string[] { separator };
            var splitInference = TextFileContents.TrySplitColumns(sample, separatorCandidates);
            
            if (!splitInference.IsSuccess)
            {
                throw new InferenceException(InferenceType.ColumnSplit, "Unable to split the file provided into multiple, consistent columns.");
            }

            return splitInference;
        }
Exemplo n.º 4
0
        public static ColumnInferenceResult InferColumns(MLContext context, IMultiStreamSource multiStreamSource,
                                                         string label, bool hasHeader, string separator, bool?isQuoted, bool?isSparse)
        {
            // heuristic: use first stream in multi-stream source to infer column types & split
            var stream = multiStreamSource.Open(0);
            var sample = TextFileSample.CreateFromFullStream(stream);

            Func <TextLoader, IDataView> createDataView = (textLoader) =>
            {
                return(textLoader.Read(multiStreamSource));
            };

            return(InferColumns(context, sample, createDataView, label, hasHeader, separator, isQuoted, isSparse));
        }
Exemplo n.º 5
0
        private static TextFileContents.ColumnSplitResult InferSplit(TextFileSample sample, string separator, bool?isQuoted, bool?isSparse)
        {
            var separatorCandidates = separator == null ? TextFileContents.DefaultSeparators : new string[] { separator };
            var splitInference      = TextFileContents.TrySplitColumns(sample, separatorCandidates);

            // respect passed-in overrides
            if (isQuoted != null)
            {
                splitInference.AllowQuote = isQuoted.Value;
            }
            if (isSparse != null)
            {
                splitInference.AllowSparse = isSparse.Value;
            }

            if (!splitInference.IsSuccess)
            {
                throw new InferenceException(InferenceType.ColumnSplit, "Unable to split the file provided into multiple, consistent columns.");
            }

            return(splitInference);
        }
Exemplo n.º 6
0
        private static ColumnTypeInference.InferenceResult InferColumnTypes(MLContext context, TextFileSample sample,
                                                                            TextFileContents.ColumnSplitResult splitInference)
        {
            // infer column types
            var typeInferenceResult = ColumnTypeInference.InferTextFileColumnTypes(context, sample,
                                                                                   new ColumnTypeInference.Arguments
            {
                ColumnCount = splitInference.ColumnCount,
                Separator   = splitInference.Separator,
                AllowSparse = splitInference.AllowSparse,
                AllowQuote  = splitInference.AllowQuote,
            });

            if (!typeInferenceResult.IsSuccess)
            {
                throw new InferenceException(InferenceType.ColumnDataKind, "Unable to infer column types of the file provided.");
            }

            return(typeInferenceResult);
        }