Exemplo n.º 1
0
        // /param mustHalt has the SLIM-RNN to halt to be a valid solution?
        public void search(uint maximalIteration, bool mustHalt, out bool wasSolved, out SlimRnn solutionRnn)
        {
            wasSolved   = false;
            solutionRnn = null;

            slimRnn.learningAlgorithm = this;

            for (uint levinSearchIteration = 1; levinSearchIteration <= maximalIteration; levinSearchIteration++)
            {
                iteration(levinSearchIteration, mustHalt, out wasSolved, out solutionRnn);
                if (wasSolved)
                {
                    goto reset;
                }
            }

reset:
            slimRnn.learningAlgorithm = null;
        }
Exemplo n.º 2
0
        public static void debugConnections(SlimRnn slimRnn)
        {
            Console.WriteLine("SlimRnn");

            int neuronIndex = 0;

            foreach (SlimRnnNeuron iNeuron in slimRnn.neurons)
            {
                Console.WriteLine("   neuron idx={0}", neuronIndex);

                int connectionIndex = 0;
                foreach (var iConnection in iNeuron.outNeuronsWithWeights)
                {
                    Console.WriteLine("      connection idx={0} wasUsed={1} weight={2}", connectionIndex, iConnection.wasUsed, iConnection.weight);
                    connectionIndex++;
                }

                neuronIndex++;
            }
        }
Exemplo n.º 3
0
        // depth first search of the changes of the weights of the SLIM-RNN
        //
        // this version doesn't timeshare the computations (to save RAM)

        // /param mustHalt has the SLIM-RNN to halt to be a valid solution?
        void depthFirstSearch(uint levinSearchIteration, bool mustHalt, out bool wasSolved, out SlimRnn solutionRnn)
        {
            solutionRnn = null;
            wasSolved   = false;

            WeightChangeTreeElement weightChangeTreeRoot = WeightChangeTreeElement.makeRoot();

            currentWeightChangeTreeElement = null; // to ignore calls to ISlimRnnLearningAlgorithm.opportunityToAdjustWeight()

            // scan all weights for eligable weights
            List <SlimRnnNeuronWithWeight> eligibleWeights = new List <SlimRnnNeuronWithWeight>();

            foreach (SlimRnnNeuron iNeuron in slimRnn.neurons)
            {
                eligibleWeights.AddRange(iNeuron.outNeuronsWithWeights.Where(v => v.isEligable));
            }

            // build tree of the possible weight changes
            //
            // by iterating over all elements in the trace and adding all possible weight values to the weightChangeTree
            {
                List <WeightChangeTreeElement>
                weightChangeTreeLeafElements = new List <WeightChangeTreeElement> {
                    weightChangeTreeRoot
                },
                    nextWeightChangeTreeLeafElements = new List <WeightChangeTreeElement>();

                foreach (SlimRnnNeuronWithWeight iTrace in eligibleWeights)
                {
                    foreach (WeightChangeTreeElement iWeightChangeTreeElement in weightChangeTreeLeafElements)
                    {
                        /*
                         * for (
                         *  uint weightWithPropabilityTableIndex = 0;
                         *  weightWithPropabilityTableIndex < weightWithPropabilityTable.Count;
                         *  weightWithPropabilityTableIndex++
                         * ) {
                         *
                         *  WeightChangeTreeElement createdWeightChangeTreeElement = WeightChangeTreeElement.make(iTrace, weightWithPropabilityTableIndex, *parent**iWeightChangeTreeElement);
                         *  iWeightChangeTreeElement.children.Add(createdWeightChangeTreeElement);
                         *  iWeightChangeTreeElement.childrenConnectionNeuronIndices.Add(new Tuple<uint, uint>(iTrace.source.neuronIndex, iTrace.target.neuronIndex));
                         *
                         *  nextWeightChangeTreeLeafElements.Add(createdWeightChangeTreeElement); // keep track of new leaf elements of the weight change tree
                         * }*/
                        nextWeightChangeTreeLeafElements.AddRange(createWeightChangeTreeElementsForConnectionAndAddToParent(iTrace, iWeightChangeTreeElement));
                    }

                    weightChangeTreeLeafElements     = nextWeightChangeTreeLeafElements;
                    nextWeightChangeTreeLeafElements = new List <WeightChangeTreeElement>();
                }
            }

            // set all weights of the trace to zero
            // we do this because the connections are this way inactive and this avoids any call to  ISlimRnnLearningAlgorithm.opportunityToAdjustWeight() for
            // connections which are already inside the weightChangeTree

            foreach (var iNeuronWithWeight in eligibleWeights)
            {
                iNeuronWithWeight.weight = 0.0f;
            }

            // depth-first-search iterate and update the weightChange tree as necessary

            List <DepthFirstSearchStackElement> stack = new List <DepthFirstSearchStackElement>();

            stack.Clear();
            stack.push(DepthFirstSearchStackElement.make(weightChangeTreeRoot));

            while (!stack.isEmpty())
            {
                DepthFirstSearchStackElement topStackElement = stack.pop();

                // calls to ISlimRnnLearningAlgorithm.opportunityToAdjustWeight() have to modify the tree
                currentWeightChangeTreeElement = topStackElement.treeElement;

                if (!currentWeightChangeTreeElement.isRoot)
                {
                    // do modification of SLIM-RNN

                    //    OPTIMIZATION TODO< check if we have to do this recursivly or if it leads to the right answer with the nonrecursive code, the recursive code is correct >
                    //    nonrecursive code:
                    //    currentWeightChangeTreeElement.neuronWithWeight.weight = weightWithPropabilityTable[(int)currentWeightChangeTreeElement.weightWithPropabilityTableIndex].weight;

                    //    recursive code

                    WeightChangeTreeElement currentWeightUpdateElement = currentWeightChangeTreeElement;
                    for (;;)
                    {
                        if (/*unnecessary   currentWeightUpdateElement == null ||*/ currentWeightUpdateElement.isRoot)
                        {
                            break;
                        }

                        currentWeightUpdateElement.neuronWithWeight.weight = weightWithPropabilityTable[(int)currentWeightUpdateElement.weightWithPropabilityTableIndex].weight;

                        currentWeightUpdateElement = currentWeightUpdateElement.parent;
                    }

                    //   we need to label all connections which got already adapted
                    currentWeightUpdateElement = currentWeightChangeTreeElement;
                    for (;;)
                    {
                        if (/*unnecessary   currentWeightUpdateElement == null ||*/ currentWeightUpdateElement.isRoot)
                        {
                            break;
                        }

                        var connectionTuple = new Tuple <uint, uint>(currentWeightUpdateElement.neuronWithWeight.source.neuronIndex, currentWeightUpdateElement.neuronWithWeight.target.neuronIndex);
                        Debug.Assert(!globalConnectionNeuronIndices.Contains(connectionTuple));
                        globalConnectionNeuronIndices.Add(connectionTuple);

                        currentWeightUpdateElement = currentWeightUpdateElement.parent;
                    }


                    // debug network
                    //SlimRnnDebug.debugConnections(slimRnn);


                    double tLim = calcTimebound(levinSearchIteration, topStackElement.treeElement);
                    bool   slimRnnSolvedTask = tester.doesSlimRnnSolveTask(slimRnn, mustHalt, tLim);

                    if (slimRnnSolvedTask)
                    {
                        // the task has been solved with this network
                        wasSolved   = true;
                        solutionRnn = slimRnn;
                        return;
                    }

                    // reset all touched connections to 0.0 to avoid any sideeffects

                    // OPTIMIZATION TODO< in the recursive version of depth-first-search we don't need to do this because we modify the network with each successive call,
                    //                    so in this version we don't have to reset the whole connections to null >

                    currentWeightUpdateElement = currentWeightChangeTreeElement;
                    for (;;)
                    {
                        if (/*unnecessary   currentWeightUpdateElement == null ||*/ currentWeightUpdateElement.isRoot)
                        {
                            break;
                        }

                        currentWeightUpdateElement.neuronWithWeight.weight = 0.0f;

                        currentWeightUpdateElement = currentWeightUpdateElement.parent;
                    }


                    //   we need to unlabel all connections which got already adapted
                    currentWeightUpdateElement = currentWeightChangeTreeElement;
                    for (;;)
                    {
                        if (/*unnecessary   currentWeightUpdateElement == null ||*/ currentWeightUpdateElement.isRoot)
                        {
                            break;
                        }

                        var connectionTuple = new Tuple <uint, uint>(currentWeightUpdateElement.neuronWithWeight.source.neuronIndex, currentWeightUpdateElement.neuronWithWeight.target.neuronIndex);
                        Debug.Assert(globalConnectionNeuronIndices.Contains(connectionTuple));
                        globalConnectionNeuronIndices.Remove(connectionTuple);

                        currentWeightUpdateElement = currentWeightUpdateElement.parent;
                    }
                }

                // push all children for depth-first-search
                foreach (var iTreeChildren in topStackElement.treeElement.children)
                {
                    stack.push(DepthFirstSearchStackElement.make(iTreeChildren));
                }
            }
        }
Exemplo n.º 4
0
 // /param mustHalt has the SLIM-RNN to halt to be a valid solution?
 void iteration(uint levinSearchIteration, bool mustHalt, out bool wasSolved, out SlimRnn solutionRnn)
 {
     depthFirstSearch(levinSearchIteration, mustHalt, out wasSolved, out solutionRnn);
 }
Exemplo n.º 5
0
 public UniversalSlimRnnSearch(SlimRnn slimRnn, ITaskSolvedAndVerifiedTester tester)
 {
     this.slimRnn = slimRnn;
     this.tester  = tester;
 }