Exemplo n.º 1
0
        public MinimizationOutput FindMinimum(IObjectiveFunction objective, Vector <double> initial_guess)
        {
            if (!objective.GradientSupported)
            {
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for Newton minimization.");
            }

            if (!objective.HessianSupported)
            {
                throw new IncompatibleObjectiveException("Hessian not supported in objective function, but required for Newton minimization.");
            }

            if (!(objective is ObjectiveChecker))
            {
                objective = new ObjectiveChecker(objective, this.ValidateObjective, this.ValidateGradient, this.ValidateHessian);
            }

            IEvaluation initial_eval = objective.Evaluate(initial_guess);

            // Check that we're not already done
            if (this.ExitCriteriaSatisfied(initial_guess, initial_eval.Gradient))
            {
                return(new MinimizationOutput(initial_eval, 0, ExitCondition.AbsoluteGradient));
            }

            // Set up line search algorithm
            var line_searcher = new WeakWolfeLineSearch(1e-4, 0.9, 1e-4, max_iterations: 1000);

            // Declare state variables
            IEvaluation      candidate_point = initial_eval;
            Vector <double>  search_direction;
            LineSearchOutput result;

            // Subsequent steps
            int  iterations = 0;
            int  total_line_search_steps = 0;
            int  iterations_with_nontrivial_line_search = 0;
            int  steepest_descent_resets = 0;
            bool tmp_line_search         = false;

            while (!this.ExitCriteriaSatisfied(candidate_point.Point, candidate_point.Gradient) && iterations < this.MaximumIterations)
            {
                search_direction = candidate_point.Hessian.LU().Solve(-candidate_point.Gradient);

                if (search_direction * candidate_point.Gradient >= 0)
                {
                    search_direction         = -candidate_point.Gradient;
                    steepest_descent_resets += 1;
                    tmp_line_search          = true;
                }

                if (this.UseLineSearch || tmp_line_search)
                {
                    try
                    {
                        result = line_searcher.FindConformingStep(objective, candidate_point, search_direction, 1.0);
                    }
                    catch (Exception e)
                    {
                        throw new InnerOptimizationException("Line search failed.", e);
                    }
                    iterations_with_nontrivial_line_search += result.Iterations > 0 ? 1 : 0;
                    total_line_search_steps += result.Iterations;
                    candidate_point          = result.FunctionInfoAtMinimum;
                }
                else
                {
                    candidate_point = objective.Evaluate(candidate_point.Point + search_direction);
                }

                tmp_line_search = false;

                iterations += 1;
            }

            if (iterations == this.MaximumIterations)
            {
                throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached.", this.MaximumIterations));
            }

            return(new MinimizationWithLineSearchOutput(candidate_point, iterations, ExitCondition.AbsoluteGradient, total_line_search_steps, iterations_with_nontrivial_line_search));
        }
Exemplo n.º 2
0
        // Implemented following http://www.math.washington.edu/~burke/crs/408/lectures/L9-weak-Wolfe.pdf
        public LineSearchOutput FindConformingStep(IObjectiveFunction objective, IEvaluation starting_point, Vector <double> search_direction, double initial_step, double upper_bound = Double.PositiveInfinity)
        {
            if (!(objective is ObjectiveChecker))
            {
                objective = new ObjectiveChecker(objective, this.ValidateValue, this.ValidateGradient, null);
            }

            double lower_bound = 0.0;
            double step        = initial_step;

            double          initial_value    = starting_point.Value;
            Vector <double> initial_gradient = starting_point.Gradient;

            double initial_dd = search_direction * initial_gradient;

            int           ii;
            IEvaluation   candidate_eval  = null;
            ExitCondition reason_for_exit = ExitCondition.None;

            for (ii = 0; ii < this.MaximumIterations; ++ii)
            {
                candidate_eval = objective.Evaluate(starting_point.Point + search_direction * step);

                double step_dd = search_direction * candidate_eval.Gradient;

                if (candidate_eval.Value > initial_value + this.C1 * step * initial_dd)
                {
                    upper_bound = step;
                    step        = 0.5 * (lower_bound + upper_bound);
                }
                else if (Math.Abs(step_dd) > this.C2 * Math.Abs(initial_dd))
                {
                    lower_bound = step;
                    step        = Double.IsPositiveInfinity(upper_bound) ? 2 * lower_bound : 0.5 * (lower_bound + upper_bound);
                }
                else
                {
                    reason_for_exit = ExitCondition.StrongWolfeCriteria;
                    break;
                }

                if (!Double.IsInfinity(upper_bound))
                {
                    double max_rel_change = 0.0;
                    for (int jj = 0; jj < candidate_eval.Point.Count; ++jj)
                    {
                        double tmp = Math.Abs(search_direction[jj] * (upper_bound - lower_bound)) / Math.Max(Math.Abs(candidate_eval.Point[jj]), 1.0);
                        max_rel_change = Math.Max(max_rel_change, tmp);
                    }
                    if (max_rel_change < this.ParameterTolerance)
                    {
                        reason_for_exit = ExitCondition.LackOfProgress;
                        break;
                    }
                }
            }

            if (ii == this.MaximumIterations && Double.IsPositiveInfinity(upper_bound))
            {
                throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached. Function appears to be unbounded in search direction.", this.MaximumIterations));
            }
            else if (ii == this.MaximumIterations)
            {
                throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached.", this.MaximumIterations));
            }
            else
            {
                return(new LineSearchOutput(candidate_eval, ii, step, reason_for_exit));
            }
        }
Exemplo n.º 3
0
        public MinimizationOutput FindMinimum(IObjectiveFunction objective, Vector <double> initial_guess)
        {
            if (!objective.GradientSupported)
            {
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for ConjugateGradient minimization.");
            }

            if (!(objective is ObjectiveChecker))
            {
                objective = new ObjectiveChecker(objective, this.ValidateObjective, this.ValidateGradient, null);
            }

            IEvaluation initial_eval = objective.Evaluate(initial_guess);
            var         gradient     = initial_eval.Gradient;

            // Check that we're not already done
            if (this.ExitCriteriaSatisfied(initial_guess, gradient))
            {
                return(new MinimizationOutput(initial_eval, 0, ExitCondition.AbsoluteGradient));
            }

            // Set up line search algorithm
            var line_searcher = new WeakWolfeLineSearch(1e-4, 0.1, 1e-4, max_iterations: 1000);

            // Declare state variables
            IEvaluation     candidate_point;
            Vector <double> steepest_direction, previous_steepest_direction, search_direction;

            // First step
            steepest_direction = -gradient;
            search_direction   = steepest_direction;
            double           initial_step_size = 100 * this.GradientTolerance / (gradient * gradient);
            LineSearchOutput result;

            try
            {
                result = line_searcher.FindConformingStep(objective, initial_eval, search_direction, initial_step_size);
            }
            catch (Exception e)
            {
                throw new InnerOptimizationException("Line search failed.", e);
            }

            candidate_point = result.FunctionInfoAtMinimum;

            double step_size = result.FinalStep;

            // Subsequent steps
            int iterations = 1;
            int total_line_search_steps = result.Iterations;
            int iterations_with_nontrivial_line_search = result.Iterations > 0 ? 0 : 1;
            int steepest_descent_resets = 0;

            while (!this.ExitCriteriaSatisfied(candidate_point.Point, candidate_point.Gradient) && iterations < this.MaximumIterations)
            {
                previous_steepest_direction = steepest_direction;
                steepest_direction          = -candidate_point.Gradient;
                var search_direction_adjuster = Math.Max(0, steepest_direction * (steepest_direction - previous_steepest_direction) / (previous_steepest_direction * previous_steepest_direction));

                //double prev_grad_mag = previous_steepest_direction*previous_steepest_direction;
                //double grad_overlap = steepest_direction*previous_steepest_direction;
                //double search_grad_overlap = candidate_point.Gradient*search_direction;

                //if (iterations % initial_guess.Count == 0 || (Math.Abs(grad_overlap) >= 0.2 * prev_grad_mag) || (-2 * prev_grad_mag >= search_grad_overlap) || (search_grad_overlap >= -0.2 * prev_grad_mag))
                //    search_direction = steepest_direction;
                //else
                //    search_direction = steepest_direction + search_direction_adjuster * search_direction;

                search_direction = steepest_direction + search_direction_adjuster * search_direction;
                if (search_direction * candidate_point.Gradient >= 0)
                {
                    search_direction         = steepest_direction;
                    steepest_descent_resets += 1;
                }

                try
                {
                    result = line_searcher.FindConformingStep(objective, candidate_point, search_direction, step_size);
                }
                catch (Exception e)
                {
                    throw new InnerOptimizationException("Line search failed.", e);
                }

                iterations_with_nontrivial_line_search += result.Iterations > 0 ? 1 : 0;
                total_line_search_steps += result.Iterations;

                step_size       = result.FinalStep;
                candidate_point = result.FunctionInfoAtMinimum;

                iterations += 1;
            }

            if (iterations == this.MaximumIterations)
            {
                throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached.", this.MaximumIterations));
            }

            return(new MinimizationWithLineSearchOutput(candidate_point, iterations, ExitCondition.AbsoluteGradient, total_line_search_steps, iterations_with_nontrivial_line_search));
        }
Exemplo n.º 4
0
 public CheckedEvaluation(ObjectiveChecker checker, IEvaluation evaluation)
 {
     this.Checker         = checker;
     this.InnerEvaluation = evaluation;
 }
Exemplo n.º 5
0
        public MinimizationOutput FindMinimum(IObjectiveFunction objective, Vector <double> lower_bound, Vector <double> upper_bound, Vector <double> initial_guess)
        {
            if (!objective.GradientSupported)
            {
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for BFGS minimization.");
            }

            if (!(objective is ObjectiveChecker))
            {
                objective = new ObjectiveChecker(objective, this.ValidateObjective, this.ValidateGradient, null);
            }

            // Check that dimensions match
            if (lower_bound.Count != upper_bound.Count || lower_bound.Count != initial_guess.Count)
            {
                throw new ArgumentException("Dimensions of bounds and/or initial guess do not match.");
            }

            // Check that initial guess is feasible
            for (int ii = 0; ii < initial_guess.Count; ++ii)
            {
                if (initial_guess[ii] < lower_bound[ii] || initial_guess[ii] > upper_bound[ii])
                {
                    throw new ArgumentException("Initial guess is not in the feasible region");
                }
            }

            IEvaluation initial_eval = objective.Evaluate(initial_guess);

            // Check that we're not already done
            ExitCondition current_exit_condition = this.ExitCriteriaSatisfied(initial_eval, null, lower_bound, upper_bound, 0);

            if (current_exit_condition != ExitCondition.None)
            {
                return(new MinimizationOutput(initial_eval, 0, current_exit_condition));
            }

            // Set up line search algorithm
            var line_searcher = new StrongWolfeLineSearch(1e-4, 0.9, Math.Max(this.ParameterTolerance, 1e-5), max_iterations: 1000);

            // Declare state variables
            IEvaluation     candidate_point, previous_point;
            double          step_size;
            Vector <double> gradient, step, line_search_direction, reduced_solution1, reduced_gradient, reduced_initial_point, reduced_cauchy_point, solution1;
            Matrix <double> pseudo_hessian, reduced_hessian;
            List <int>      reduced_map;

            // First step
            pseudo_hessian = DiagonalMatrix.CreateIdentity(initial_guess.Count);

            // Determine active set
            var gradient_projection_result = QuadraticGradientProjectionSearch.search(initial_eval.Point, initial_eval.Gradient, pseudo_hessian, lower_bound, upper_bound);
            var cauchy_point = gradient_projection_result.Item1;
            var fixed_count  = gradient_projection_result.Item2;
            var is_fixed     = gradient_projection_result.Item3;
            var free_count   = lower_bound.Count - fixed_count;

            if (free_count > 0)
            {
                reduced_gradient      = new DenseVector(free_count);
                reduced_hessian       = new DenseMatrix(free_count, free_count);
                reduced_map           = new List <int>(free_count);
                reduced_initial_point = new DenseVector(free_count);
                reduced_cauchy_point  = new DenseVector(free_count);

                CreateReducedData(initial_eval.Point, cauchy_point, is_fixed, lower_bound, upper_bound, initial_eval.Gradient, pseudo_hessian, reduced_initial_point, reduced_cauchy_point, reduced_gradient, reduced_hessian, reduced_map);

                // Determine search direction and maximum step size
                reduced_solution1 = reduced_initial_point + reduced_hessian.Cholesky().Solve(-reduced_gradient);

                solution1 = reduced_to_full(reduced_map, reduced_solution1, cauchy_point);
            }
            else
            {
                solution1 = cauchy_point;
            }

            var direction_from_cauchy      = solution1 - cauchy_point;
            var max_step_from_cauchy_point = FindMaxStep(cauchy_point, direction_from_cauchy, lower_bound, upper_bound);

            var solution2 = cauchy_point + Math.Min(max_step_from_cauchy_point, 1.0) * direction_from_cauchy;

            line_search_direction = solution2 - initial_eval.Point;
            var max_line_search_step = FindMaxStep(initial_eval.Point, line_search_direction, lower_bound, upper_bound);
            var est_step_size        = -initial_eval.Gradient * line_search_direction / (line_search_direction * pseudo_hessian * line_search_direction);

            var starting_step_size = Math.Min(Math.Max(est_step_size, 1.0), max_line_search_step);

            // Line search
            LineSearchOutput result;

            try
            {
                result = line_searcher.FindConformingStep(objective, initial_eval, line_search_direction, starting_step_size, upper_bound: max_line_search_step);
            }
            catch (Exception e)
            {
                throw new InnerOptimizationException("Line search failed.", e);
            }

            previous_point  = initial_eval;
            candidate_point = result.FunctionInfoAtMinimum;
            gradient        = candidate_point.Gradient;
            step            = candidate_point.Point - initial_guess;
            step_size       = result.FinalStep;

            // Subsequent steps
            int iterations;
            int total_line_search_steps = result.Iterations;
            int iterations_with_nontrivial_line_search = result.Iterations > 0 ? 0 : 1;
            int steepest_descent_resets = 0;

            for (iterations = 1; iterations < this.MaximumIterations; ++iterations)
            {
                // Do BFGS update
                var y = candidate_point.Gradient - previous_point.Gradient;

                double sy = step * y;
                if (sy > 0.0) // only do update if it will create a positive definite matrix
                {
                    double sts = step * step;
                    //inverse_pseudo_hessian = inverse_pseudo_hessian + ((sy + y * inverse_pseudo_hessian * y) / Math.Pow(sy, 2.0)) * step.OuterProduct(step) - ((inverse_pseudo_hessian * y.ToColumnMatrix()) * step.ToRowMatrix() + step.ToColumnMatrix() * (y.ToRowMatrix() * inverse_pseudo_hessian)) * (1.0 / sy);
                    var Hs  = pseudo_hessian * step;
                    var sHs = step * pseudo_hessian * step;
                    pseudo_hessian = pseudo_hessian + y.OuterProduct(y) * (1.0 / sy) - Hs.OuterProduct(Hs) * (1.0 / sHs);
                }
                else
                {
                    steepest_descent_resets += 1;
                    //pseudo_hessian = LinearAlgebra.Double.DiagonalMatrix.Identity(initial_guess.Count);
                }

                // Determine active set
                gradient_projection_result = QuadraticGradientProjectionSearch.search(candidate_point.Point, candidate_point.Gradient, pseudo_hessian, lower_bound, upper_bound);
                cauchy_point = gradient_projection_result.Item1;
                fixed_count  = gradient_projection_result.Item2;
                is_fixed     = gradient_projection_result.Item3;
                free_count   = lower_bound.Count - fixed_count;

                if (free_count > 0)
                {
                    reduced_gradient      = new DenseVector(free_count);
                    reduced_hessian       = new DenseMatrix(free_count, free_count);
                    reduced_map           = new List <int>(free_count);
                    reduced_initial_point = new DenseVector(free_count);
                    reduced_cauchy_point  = new DenseVector(free_count);

                    CreateReducedData(candidate_point.Point, cauchy_point, is_fixed, lower_bound, upper_bound, candidate_point.Gradient, pseudo_hessian, reduced_initial_point, reduced_cauchy_point, reduced_gradient, reduced_hessian, reduced_map);

                    // Determine search direction and maximum step size
                    reduced_solution1 = reduced_initial_point + reduced_hessian.Cholesky().Solve(-reduced_gradient);

                    solution1 = reduced_to_full(reduced_map, reduced_solution1, cauchy_point);
                }
                else
                {
                    solution1 = cauchy_point;
                }

                direction_from_cauchy      = solution1 - cauchy_point;
                max_step_from_cauchy_point = FindMaxStep(cauchy_point, direction_from_cauchy, lower_bound, upper_bound);
                //var cauchy_eval = objective.Evaluate(cauchy_point);

                solution2 = cauchy_point + Math.Min(max_step_from_cauchy_point, 1.0) * direction_from_cauchy;

                line_search_direction = solution2 - candidate_point.Point;
                max_line_search_step  = FindMaxStep(candidate_point.Point, line_search_direction, lower_bound, upper_bound);

                //line_search_direction = solution1 - candidate_point.Point;
                //max_line_search_step = FindMaxStep(candidate_point.Point, line_search_direction, lower_bound, upper_bound);

                if (max_line_search_step == 0.0)
                {
                    line_search_direction = cauchy_point - candidate_point.Point;
                    max_line_search_step  = FindMaxStep(candidate_point.Point, line_search_direction, lower_bound, upper_bound);
                }

                est_step_size = -candidate_point.Gradient * line_search_direction / (line_search_direction * pseudo_hessian * line_search_direction);

                starting_step_size = Math.Min(Math.Max(est_step_size, 1.0), max_line_search_step);

                // Line search
                try
                {
                    result = line_searcher.FindConformingStep(objective, candidate_point, line_search_direction, starting_step_size, upper_bound: max_line_search_step);
                    //result = line_searcher.FindConformingStep(objective, cauchy_eval, direction_from_cauchy, Math.Min(1.0, max_step_from_cauchy_point), upper_bound: max_step_from_cauchy_point);
                }
                catch (Exception e)
                {
                    throw new InnerOptimizationException("Line search failed.", e);
                }

                iterations_with_nontrivial_line_search += result.Iterations > 0 ? 1 : 0;
                total_line_search_steps += result.Iterations;

                step_size       = result.FinalStep;
                step            = result.FunctionInfoAtMinimum.Point - candidate_point.Point;
                previous_point  = candidate_point;
                candidate_point = result.FunctionInfoAtMinimum;

                current_exit_condition = this.ExitCriteriaSatisfied(candidate_point, previous_point, lower_bound, upper_bound, iterations);
                if (current_exit_condition != ExitCondition.None)
                {
                    break;
                }
            }

            if (iterations == this.MaximumIterations && current_exit_condition == ExitCondition.None)
            {
                throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached.", this.MaximumIterations));
            }

            return(new MinimizationWithLineSearchOutput(candidate_point, iterations, current_exit_condition, total_line_search_steps, iterations_with_nontrivial_line_search));
        }
Exemplo n.º 6
0
        public MinimizationOutput FindMinimum(IObjectiveFunction objective, Vector <double> initial_guess)
        {
            if (!objective.GradientSupported)
            {
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for BFGS minimization.");
            }

            if (!(objective is ObjectiveChecker))
            {
                objective = new ObjectiveChecker(objective, this.ValidateObjective, this.ValidateGradient, null);
            }

            IEvaluation initial_eval = objective.Evaluate(initial_guess);

            // Check that we're not already done
            ExitCondition current_exit_condition = this.ExitCriteriaSatisfied(initial_eval, null);

            if (current_exit_condition != ExitCondition.None)
            {
                return(new MinimizationOutput(initial_eval, 0, current_exit_condition));
            }

            // Set up line search algorithm
            var line_searcher = new WeakWolfeLineSearch(1e-4, 0.9, Math.Max(this.ParameterTolerance, 1e-10), max_iterations: 1000);

            // Declare state variables
            IEvaluation     candidate_point, previous_point;
            double          step_size;
            Vector <double> gradient, step, search_direction;
            Matrix <double> inverse_pseudo_hessian;

            // First step
            inverse_pseudo_hessian = LinearAlgebra.Double.DiagonalMatrix.CreateIdentity(initial_guess.Count);
            search_direction       = -initial_eval.Gradient;
            step_size = 100 * this.GradientTolerance / (search_direction * search_direction);

            LineSearchOutput result;

            try
            {
                result = line_searcher.FindConformingStep(objective, initial_eval, search_direction, step_size);
            }
            catch (Exception e)
            {
                throw new InnerOptimizationException("Line search failed.", e);
            }

            previous_point  = initial_eval;
            candidate_point = result.FunctionInfoAtMinimum;
            gradient        = candidate_point.Gradient;
            step            = candidate_point.Point - initial_guess;
            step_size       = result.FinalStep;

            // Subsequent steps
            Matrix <double> I = LinearAlgebra.Double.DiagonalMatrix.CreateIdentity(initial_guess.Count);
            int             iterations;
            int             total_line_search_steps = result.Iterations;
            int             iterations_with_nontrivial_line_search = result.Iterations > 0 ? 0 : 1;
            int             steepest_descent_resets = 0;

            for (iterations = 1; iterations < this.MaximumIterations; ++iterations)
            {
                var y = candidate_point.Gradient - previous_point.Gradient;

                double sy = step * y;
                inverse_pseudo_hessian = inverse_pseudo_hessian + ((sy + y * inverse_pseudo_hessian * y) / Math.Pow(sy, 2.0)) * step.OuterProduct(step) - ((inverse_pseudo_hessian * y.ToColumnMatrix()) * step.ToRowMatrix() + step.ToColumnMatrix() * (y.ToRowMatrix() * inverse_pseudo_hessian)) * (1.0 / sy);
                search_direction       = -inverse_pseudo_hessian * candidate_point.Gradient;

                if (search_direction * candidate_point.Gradient >= 0.0)
                {
                    search_direction         = -candidate_point.Gradient;
                    inverse_pseudo_hessian   = LinearAlgebra.Double.DiagonalMatrix.CreateIdentity(initial_guess.Count);
                    steepest_descent_resets += 1;
                }
                //else if (search_direction * candidate_point.Gradient >= -this.GradientTolerance*this.GradientTolerance)
                //{
                //    search_direction = -candidate_point.Gradient;
                //    inverse_pseudo_hessian = LinearAlgebra.Double.DiagonalMatrix.Identity(initial_guess.Count);
                //    steepest_descent_resets += 1;
                //}

                try
                {
                    result = line_searcher.FindConformingStep(objective, candidate_point, search_direction, 1.0);
                }
                catch (Exception e)
                {
                    throw new InnerOptimizationException("Line search failed.", e);
                }

                iterations_with_nontrivial_line_search += result.Iterations > 0 ? 1 : 0;
                total_line_search_steps += result.Iterations;

                step_size       = result.FinalStep;
                step            = result.FunctionInfoAtMinimum.Point - candidate_point.Point;
                previous_point  = candidate_point;
                candidate_point = result.FunctionInfoAtMinimum;

                current_exit_condition = this.ExitCriteriaSatisfied(candidate_point, previous_point);
                if (current_exit_condition != ExitCondition.None)
                {
                    break;
                }
            }

            if (iterations == this.MaximumIterations && current_exit_condition == ExitCondition.None)
            {
                throw new MaximumIterationsException(String.Format("Maximum iterations ({0}) reached.", this.MaximumIterations));
            }

            return(new MinimizationWithLineSearchOutput(candidate_point, iterations, current_exit_condition, total_line_search_steps, iterations_with_nontrivial_line_search));
        }