Exemplo n.º 1
0
        public void TestVelocityOnPlane()
        {
            Frisbee.SimulationState st = new Frisbee.SimulationState
                                             {
                                                 VX = 1,
                                                 VY = 1,
                                                 Theta = Math.PI / 4
                                             };

            Matrix<double> transformation =
                new SparseMatrix(new [,]
                                     {
                                         {st.CosTheta, st.SinTheta*st.SinPhi, -st.SinTheta*st.CosPhi},
                                         {0, st.CosPhi, st.SinPhi},
                                         {st.SinTheta, -st.CosTheta*st.SinPhi, st.CosTheta*st.CosPhi}
                                     });

            SparseVector c3 = new SparseVector(transformation.Row(2));

            SparseVector velocity = new SparseVector(new[] { st.VX, st.VY, st.VZ });
            double velocityMagnitude = velocity.Norm(2);

            double velocityC3 = velocity.DotProduct(c3);

            Vector<double> vp = velocity.Subtract(c3.Multiply(velocityC3));
            double vpMagnitude = vp.Norm(2);
        }
Exemplo n.º 2
0
        public static SparseVector Extract(this SparseVector vector, int[] rows)
        {
            var extractedVector = new SparseVector(rows.Length);

            for (int i = 0; i < rows.Length; i++)
            {
                extractedVector[i] = vector[rows[i]];
            }

            return extractedVector;
        }
Exemplo n.º 3
0
 public static SparseVector MeanRowVector(this Matrix<double> matrix)
 {
     SparseVector meanVector = new SparseVector(matrix.RowCount);
     for (int i = 0; i < matrix.RowCount; i++)
     {
         SparseVector row = new SparseVector(SparseVectorStorage<double>.OfVector(matrix.Row(i).Storage));
         double elements = row.NonZerosCount;
         if (elements > 0)
         {
             meanVector[i] = row.Sum() * (1 / elements);
         }
         else
         {
             meanVector[i] = 0;
         }
     }
     return meanVector;
 }
Exemplo n.º 4
0
        public static SparseVector MeanColumnVector(this Matrix<double> matrix)
        {
            SparseVector meanVector = new SparseVector(matrix.ColumnCount);
            for (int i = 0; i < matrix.ColumnCount; i++)
            {
                SparseVector column = new SparseVector(SparseVectorStorage<double>.OfVector(matrix.Column(i).Storage));
                double elements = column.NonZerosCount;
                if (elements > 0)
                {
                    double sum = column.Sum();
                    meanVector[i] = sum*(1/elements);
                }
                else
                {
                    meanVector[i] = 0;
                }

            }
            return meanVector;
        }
Exemplo n.º 5
0
        /// <summary>
        /// Converts the string representation of a real sparse vector to double-precision sparse vector equivalent.
        /// A return value indicates whether the conversion succeeded or failed.
        /// </summary>
        /// <param name="value">
        /// A string containing a real vector to convert.
        /// </param>
        /// <param name="formatProvider">
        /// An <see cref="IFormatProvider"/> that supplies culture-specific formatting information about value.
        /// </param>
        /// <param name="result">
        /// The parsed value.
        /// </param>
        /// <returns>
        /// If the conversion succeeds, the result will contain a complex number equivalent to value.
        /// Otherwise the result will be <c>null</c>.
        /// </returns>
        public static bool TryParse(string value, IFormatProvider formatProvider, out SparseVector result)
        {
            bool ret;
            try
            {
                result = Parse(value, formatProvider);
                ret = true;
            }
            catch (ArgumentNullException)
            {
                result = null;
                ret = false;
            }
            catch (FormatException)
            {
                result = null;
                ret = false;
            }

            return ret;
        }
Exemplo n.º 6
0
        /// <summary>
        /// Outer product of two vectors
        /// </summary>
        /// <param name="u">First vector</param>
        /// <param name="v">Second vector</param>
        /// <returns>Matrix M[i,j] = u[i]*v[j] </returns>
        /// <exception cref="ArgumentNullException">If the u vector is <see langword="null" />.</exception>
        /// <exception cref="ArgumentNullException">If the v vector is <see langword="null" />.</exception>
        public static Matrix<double> OuterProduct(SparseVector u, SparseVector v)
        {
            if (u == null)
            {
                throw new ArgumentNullException("u");
            }

            if (v == null)
            {
                throw new ArgumentNullException("v");
            }

            var matrix = new SparseMatrix(u.Count, v.Count);
            for (var i = 0; i < u._storage.ValueCount; i++)
            {
                for (var j = 0; j < v._storage.ValueCount; j++)
                {
                    matrix.At(i, j, u._storage.Values[i] * v._storage.Values[j]);
                }
            }

            return matrix;
        }
        /// <summary>
        /// Returns a negated vector.
        /// </summary>
        /// <returns>The negated vector.</returns>
        /// <remarks>Added as an alternative to the unary negation operator.</remarks>
        public override Vector Negate()
        {
            var result = new SparseVector(this.Count)
                         {
                             NonZeroValues = new double[this.NonZerosCount],
                             NonZeroIndices = new int[this.NonZerosCount],
                             NonZerosCount = this.NonZerosCount
                         };

            Buffer.BlockCopy(this.NonZeroIndices, 0, result.NonZeroIndices, 0, this.NonZerosCount * Constants.SizeOfInt);

            CommonParallel.For(
                0,
                this.NonZerosCount,
                index => result.NonZeroValues[index] = -this.NonZeroValues[index]);

            return result;
        }
        /// <summary>
        /// Initializes a new instance of the <see cref="SparseVector"/> class by
        /// copying the values from another.
        /// </summary>
        /// <param name="other">
        /// The vector to create the new vector from.
        /// </param>
        public SparseVector(SparseVector other)
            : this(other.Count)
        {
            // Lets copy only needed data. Portion of needed data is determined by NonZerosCount value
            NonZeroValues = new double[other.NonZerosCount];
            NonZeroIndices = new int[other.NonZerosCount];
            NonZerosCount = other.NonZerosCount;

            Buffer.BlockCopy(other.NonZeroValues, 0, this.NonZeroValues, 0, other.NonZerosCount * Constants.SizeOfDouble);
            Buffer.BlockCopy(other.NonZeroIndices, 0, this.NonZeroIndices, 0, other.NonZerosCount * Constants.SizeOfInt);
        }
 /// <summary>
 /// Tensor Product (Outer) of this and another vector.
 /// </summary>
 /// <param name="v">The vector to operate on.</param>
 /// <returns>
 /// Matrix M[i,j] = this[i] * v[j].
 /// </returns>
 /// <seealso cref="OuterProduct"/>
 public Matrix TensorMultiply(SparseVector v)
 {
     return OuterProduct(this, v);
 }
Exemplo n.º 10
0
 private static double CosineR(SparseVector Vector_a, SparseVector Vector_b)
 {
     return Vector_a.DotProduct(Vector_b) / (Vector_a.L2Norm() * Vector_b.L2Norm());
     //return Distance.Cosine(R.Row(a).ToArray(), R.Row(b).ToArray());
 }
Exemplo n.º 11
0
 /// <summary>
 /// Outer product of this and another vector.
 /// </summary>
 /// <param name="v">The vector to operate on.</param>
 /// <returns>
 /// Matrix M[i,j] = this[i] * v[j].
 /// </returns>
 public Matrix <double> OuterProduct(SparseVector v)
 {
     return(OuterProduct(this, v));
 }
Exemplo n.º 12
0
        public void CheckSparseMechanismByZeroMultiply()
        {
            var vector = new SparseVector(10000);

            // Add non-zero elements
            vector[200] = 1.5;
            vector[500] = 3.5;
            vector[800] = 5.5;
            vector[0] = 7.5;

            // Multiply by 0
            vector *= 0;

            var storage = (SparseVectorStorage<double>) vector.Storage;
            Assert.AreEqual(0, vector[200]);
            Assert.AreEqual(0, vector[500]);
            Assert.AreEqual(0, vector[800]);
            Assert.AreEqual(0, vector[0]);
            Assert.AreEqual(0, storage.ValueCount);
        }
Exemplo n.º 13
0
        public void CheckSparseMechanismBySettingValues()
        {
            var vector = new SparseVector(10000);
            var storage = (SparseVectorStorage<double>) vector.Storage;

            // Add non-zero elements
            vector[200] = 1.5;
            Assert.AreEqual(1.5, vector[200]);
            Assert.AreEqual(1, storage.ValueCount);

            vector[500] = 3.5;
            Assert.AreEqual(3.5, vector[500]);
            Assert.AreEqual(2, storage.ValueCount);

            vector[800] = 5.5;
            Assert.AreEqual(5.5, vector[800]);
            Assert.AreEqual(3, storage.ValueCount);

            vector[0] = 7.5;
            Assert.AreEqual(7.5, vector[0]);
            Assert.AreEqual(4, storage.ValueCount);

            // Remove non-zero elements
            vector[200] = 0;
            Assert.AreEqual(0, vector[200]);
            Assert.AreEqual(3, storage.ValueCount);

            vector[500] = 0;
            Assert.AreEqual(0, vector[500]);
            Assert.AreEqual(2, storage.ValueCount);

            vector[800] = 0;
            Assert.AreEqual(0, vector[800]);
            Assert.AreEqual(1, storage.ValueCount);

            vector[0] = 0;
            Assert.AreEqual(0, vector[0]);
            Assert.AreEqual(0, storage.ValueCount);
        }
Exemplo n.º 14
0
        public void CanScaleAVectorWhenSettingPreviousNonzeroElementsToZero()
        {
            var vector = new SparseVector(20);
            vector[10] = 1.0;
            vector[11] = 2.0;
            vector[11] = 0.0;

            var scaled = new SparseVector(20);
            vector.Multiply(3.0, scaled);

            Assert.AreEqual(3.0, scaled[10]);
            Assert.AreEqual(0.0, scaled[11]);
        }
Exemplo n.º 15
0
        public void CanPointwiseMultiplySparseVector()
        {
            var zeroArray = new[] {0.0, 1.0, 0.0, 1.0, 0.0};
            var vector1 = SparseVector.OfEnumerable(Data);
            var vector2 = SparseVector.OfEnumerable(zeroArray);
            var result = new SparseVector(vector1.Count);

            vector1.PointwiseMultiply(vector2, result);

            for (var i = 0; i < vector1.Count; i++)
            {
                Assert.AreEqual(Data[i]*zeroArray[i], result[i]);
            }

            var resultStorage = (SparseVectorStorage<double>) result.Storage;
            Assert.AreEqual(2, resultStorage.ValueCount);
        }
Exemplo n.º 16
0
        public void CanDotProductOfTwoSparseVectors()
        {
            var vectorA = new SparseVector(10000);
            vectorA[200] = 1;
            vectorA[500] = 3;
            vectorA[800] = 5;
            vectorA[100] = 7;
            vectorA[900] = 9;

            var vectorB = new SparseVector(10000);
            vectorB[300] = 3;
            vectorB[500] = 5;
            vectorB[800] = 7;

            Assert.AreEqual(50.0, vectorA.DotProduct(vectorB));
        }
Exemplo n.º 17
0
 /// <summary>
 /// Converts the string representation of a real sparse vector to double-precision sparse vector equivalent.
 /// A return value indicates whether the conversion succeeded or failed.
 /// </summary>
 /// <param name="value">
 /// A string containing a real vector to convert.
 /// </param>
 /// <param name="result">
 /// The parsed value.
 /// </param>
 /// <returns>
 /// If the conversion succeeds, the result will contain a complex number equivalent to value.
 /// Otherwise the result will be <c>null</c>.
 /// </returns>
 public static bool TryParse(string value, out SparseVector result)
 {
     return(TryParse(value, null, out result));
 }
Exemplo n.º 18
0
        /// <summary>
        /// Creates a new instance of the Vector class.
        /// </summary>
        /// <param name="data">The array to create this vector from.</param>
        /// <returns>The new <c>Vector</c>.</returns>
        protected override Vector<double> CreateVector(IList<double> data)
        {
            var vector = new SparseVector(data.Count);
            for (var index = 0; index < data.Count; index++)
            {
                vector[index] = data[index];
            }

            return vector;
        }
Exemplo n.º 19
0
 private static double PearsonR(SparseVector Vector_a, SparseVector Vector_b)
 {
     double correlation = Correlation.Pearson(Vector_a,Vector_b);
     if (double.IsNaN(correlation))
     {
         // This means one of the row has 0 standard divation,
         // it does not correlate to anyone
         // so I assign the correlatino to be 0. however, strictly speaking, it should be left NaN
         correlation = 0;
     }
     return correlation;
 }
Exemplo n.º 20
0
 public void CanCreateSparseMatrix()
 {
     var vector = new SparseVector(3);
     var matrix = Matrix<double>.Build.SameAs(vector, 2, 3);
     Assert.IsInstanceOf<SparseMatrix>(matrix);
     Assert.AreEqual(2, matrix.RowCount);
     Assert.AreEqual(3, matrix.ColumnCount);
 }
        /// <summary>
        /// Creates a vector containing specified elements.
        /// </summary>
        /// <param name="index">The first element to begin copying from.</param>
        /// <param name="length">The number of elements to copy.</param>
        /// <returns>A vector containing a copy of the specified elements.</returns>
        /// <exception cref="ArgumentOutOfRangeException"><list><item>If <paramref name="index"/> is not positive or
        /// greater than or equal to the size of the vector.</item>
        /// <item>If <paramref name="index"/> + <paramref name="length"/> is greater than or equal to the size of the vector.</item>
        /// </list></exception>
        /// <exception cref="ArgumentException">If <paramref name="length"/> is not positive.</exception>
        public override Vector SubVector(int index, int length)
        {
            if (index < 0 || index >= this.Count)
            {
                throw new ArgumentOutOfRangeException("index");
            }

            if (length <= 0)
            {
                throw new ArgumentOutOfRangeException("length");
            }

            if (index + length > this.Count)
            {
                throw new ArgumentOutOfRangeException("length");
            }

            var result = new SparseVector(length);
            for (int i = index; i < index + length; i++)
                result[i - index] = this[i];

            return result;
        }
Exemplo n.º 22
0
        public static Dictionary<int, List<int>> RecommendTopN(PrefRelations PR_train, int K, List<int> targetUsers, int topN)
        {
            Dictionary<int, List<int>> topNItemsByUser = new Dictionary<int, List<int>>(targetUsers.Count);

            int userCount = PR_train.UserCount;
            int itemCount = PR_train.ItemCount;
            SparseMatrix positionMatrix = PR_train.GetPositionMatrix();

            // Make recommendations to each target user
            foreach (int indexOfUser in targetUsers)
            {
                Utils.PrintEpoch("Current user/total", indexOfUser, targetUsers.Count);

                // TODO: should have a default list of popular items in case of cold users
                Dictionary<int, double> topNItems = new Dictionary<int, double>(topN);   // To store recommendations for indexOfUser
                Dictionary<int, double> topKNeighbors = KNNCore.GetTopKNeighborsByUser(PR_train.UserSimilarities, indexOfUser, K);
                SparseVector predictedPositionsOfUser = new SparseVector(itemCount);

                // Compute the predicted position of each item for indexOfUser
                for (int indexOfItem = 0; indexOfItem < itemCount; ++indexOfItem)
                {
                    // Compute the position of this item for the user
                    // by combining neighbors' positions on this item
                    double weightedSum = 0;
                    double weightSum = 0;
                    int itemSeenCount = 0;
                    foreach (KeyValuePair<int, double> neighbor in topKNeighbors)
                    {
                        int indexOfNeighbor = neighbor.Key;
                        double similarityOfNeighbor = neighbor.Value;
                        double itemPositionOfNeighbor = positionMatrix[indexOfNeighbor, indexOfItem];

                        // TODO: Zero means it is not seen by the neighbor but 
                        // it may also be the position value of 0
                        if (itemPositionOfNeighbor != 0)
                        {
                            weightSum += similarityOfNeighbor;
                            weightedSum += itemPositionOfNeighbor * similarityOfNeighbor;
                            itemSeenCount++;
                        }
                    }

                    // If any neighbor has seen this item
                    if (itemSeenCount != 0)
                    {
                        // TODO: Add user mean may improve the performance
                        predictedPositionsOfUser[indexOfItem] = weightedSum / weightSum;
                    }
                }
                List<int> indexesOfItemSortedByPosition = Enumerable.Range(0, itemCount).ToList();

                Sorting.Sort(predictedPositionsOfUser, indexesOfItemSortedByPosition);
                indexesOfItemSortedByPosition.Reverse(); // Make it descending order by position
                // Add the top N items for user uid
                topNItemsByUser[indexOfUser] = indexesOfItemSortedByPosition.GetRange(0, topN);
            }

            return topNItemsByUser;
            #region Old version
            /*
            //===============Initialize variables==================

            // Recommendations are stored here indexed by user id
            Dictionary<int, List<int>> userRecommendations = new Dictionary<int, List<int>>(targetUsers.Count);

            int userCount = PR_train.UserCount;
            int itemCount = PR_train.ItemCount;

            // Build the item position matrix
            // each element indicates the position(kind of goodness) of an item to the user
            SparseMatrix itemPositions = new SparseMatrix(userCount, itemCount);

            Object lockMe = new Object();
            Parallel.ForEach(PR_train.GetAllPreferenceRelations, pair =>
            {
                int uid = pair.Key;
                Utilities.PrintEpoch("Current user/total", uid, userCount);
                SparseMatrix userPreferences = pair.Value;
                foreach (Tuple<int, Vector<double>> preferences in userPreferences.EnumerateRowsIndexed())
                {
                    int iid = preferences.Item1;
                    SparseVector iidPreferences = SparseVector.OfVector(preferences.Item2);
                    // The number of items that are preferred to item iid
                    int preferredCount = 0;
                    // The number of items that are less preferred to item iid
                    int lessPreferredCount = 0;
                    // The number of items (other than item iid) that are equally preferred to item iid
                    // TODO: I'm not sure if we should count unknown preferences or not?
                    int equallyPreferredCount = 0;

                    // Note: don't use the Count() method it won't skip Zeros
                    foreach (double preference in iidPreferences.Enumerate(Zeros.AllowSkip))
                    {
                        if (preference == Config.Preferences.Preferred)
                            ++preferredCount;
                        else if (preference == Config.Preferences.LessPreferred)
                            ++lessPreferredCount;
                        else if (preference == Config.Preferences.EquallyPreferred)
                            ++equallyPreferredCount;
                        else { Debug.Assert(false, "We should not see any non-match value here."); }
                    }

                    double position = ((double)lessPreferredCount - preferredCount) / (preferredCount + lessPreferredCount + equallyPreferredCount);

                    Debug.Assert(position >= -1 && position <= 1);  // According to the paper
                    if (position == 0) { Debug.Assert(preferredCount == lessPreferredCount); }  // According to the paper

                    lock (lockMe)
                    {
                        itemPositions[uid, iid] = position;
                    }
                }
            });

            // Need to cache the items appeared in each user's profile
            // as we won't consider unseen items as recommendations
            Dictionary<int, List<int>> seenItemsByUser = PR_train.GetSeenItemsByUser();

            Matrix positionMatrix = PR_train.GetPositionMatrix();

            Console.WriteLine("Recommending user/total");

            // Make recommendations for each target user
            foreach (int uid in targetUsers)
            {

                Utilities.PrintEpoch("Current user/total", uid, targetUsers.Count);

                // TODO: should have a default list of popular items in case of cold users
                Dictionary<int, double> topN = new Dictionary<int, double>(topNCount);   // To store recommendations for user uid

                Dictionary<int, double> topK = KNNCore.GetTopK(PR_train.UserSimilarities, uid, K);

                // Get a list of all candidate items
                List<int> candidateItems = new List<int>();
                foreach (int uid_neighbor in topK.Keys)
                {
                    // TODO: union will remove duplicates, seems to be expensive here
                    candidateItems = candidateItems.Union(seenItemsByUser[uid_neighbor]).ToList();
                }

                // Loop through all candidate items
                double minPosition = double.MinValue;
                int min_iid = int.MinValue;
                foreach (int iid in candidateItems)
                {
                    // Compute the average position on item iid given 
                    // by the top K neighbors. Each position is weighted 
                    // by the similarity to the target user
                    double weightedSum = 0;
                    double weightSum = 0;
                    foreach (KeyValuePair<int, double> neighbor in topK)
                    {
                        int uidNeighbor = neighbor.Key;
                        double similarity = neighbor.Value;
                        double iidPosition = itemPositions[uidNeighbor, iid];
                        // TODO: check the standard KNN, we should skip the unseen items somehow!
                        //if (neighborRating != 0)
                        // The weightSum serves as the normalization term
                        // it needs abs() because some metric such as Pearson 
                        // may produce negative weights
                        weightSum += Math.Abs(similarity);
                        weightedSum += iidPosition * similarity;
                    }

                    double position_predicted = weightedSum / weightSum;  // TODO: add some kind of user mean to improve?

                    // TODO: should have a default list of popular items in case of cold users

                    if (topN.Count < topNCount)  // Fill the top N list untill it is full
                    {
                        topN[iid] = position_predicted;
                        if (topN.Count == topNCount)
                        {
                            // Find the item with least position when we have N items in the list
                            min_iid = topN.Aggregate((l, r) => l.Value < r.Value ? l : r).Key;
                            minPosition = topN[min_iid];
                        }
                    }
                    else if (position_predicted > minPosition)
                    {
                        // Replace the least similar neighbor
                        topN.Remove(min_iid);
                        topN[iid] = position_predicted;

                        // Find the item with least position
                        min_iid = topN.Aggregate((l, r) => l.Value < r.Value ? l : r).Key;
                        minPosition = topN[min_iid];
                    }
                }
                // Add the top N items for user uid
                userRecommendations[uid] = topN.Keys.ToList();
            }

            return userRecommendations;
            */
            #endregion
        }
        private void AddScaledSparceVector(double alpha, SparseVector other)
        {
            if (other == null)
            {
                throw new ArgumentNullException("other");
            }

            if (this.Count != other.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength, "other");
            }

            if (alpha == 0.0)
            {
                return;
            }

            // I don't use ILinearAlgebraProvider because we will get no benefit due to "lock" in this[index]
            // Possible fucniton in ILinearAlgebraProvider may be AddSparseVectorToScaledSparseVector(T[] y, int[] yIndices, T alpha, T[] x, int[] xIndices);
            // But it require to develop value setting algorithm and due to "lock" it will be even more greedy then implemented below
            if (ReferenceEquals(this, other))
            {
                // Adding the same instance of sparse vector. That means if we modify "this" then "other" will be modified too.
                // To avoid such problem lets change values in internal storage of "this"
                if (alpha == 1.0)
                {
                    for (int i = 0; i < this.NonZerosCount; i++)
                    {
                        this.NonZeroValues[i] += this.NonZeroValues[i];
                    }
                }
                else if (alpha == -1.0)
                {
                    Clear(); // Vector is subtracted from itself
                    return;
                }
                else
                {
                    for (int i = 0; i < this.NonZerosCount; i++)
                    {
                        this.NonZeroValues[i] += alpha * this.NonZeroValues[i];
                    }
                }
            }
            else
            {
                // "this" and "other" are different objects, so by modifying "this" the "other" object will not be changed
                if (alpha == 1.0)
                {
                    for (int i = 0; i < other.NonZerosCount; i++)
                    {
                        this[other.NonZeroIndices[i]] += other.NonZeroValues[i];
                    }
                }
                else
                {
                    for (int i = 0; i < other.NonZerosCount; i++)
                    {
                        this[other.NonZeroIndices[i]] += alpha * other.NonZeroValues[i];
                    }
                }
            }
        }
Exemplo n.º 24
0
        /// <summary>
        /// Pointwise multiplies this vector with another vector.
        /// </summary>
        /// <param name="other">The vector to pointwise multiply with this one.</param>
        /// <returns>A new vector which is the pointwise multiplication of the two vectors.</returns>
        /// <exception cref="ArgumentNullException">If the other vector is <see langword="null" />.</exception> 
        /// <exception cref="ArgumentException">If this vector and <paramref name="other"/> are not the same size.</exception>
        public override Vector PointwiseMultiply(Vector other)
        {
            if (other == null)
            {
                throw new ArgumentNullException("other");
            }

            if (Count != other.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength, "other");
            }

            var copy = new SparseVector(Count);
            for (int i = 0; i < this._nonZeroIndices.Length; i++)
            {
                var d = this._nonZeroValues[i] * other[this._nonZeroIndices[i]];
                if (d != 0.0)
                {
                    copy[this._nonZeroIndices[i]] = d;
                }
            }

            return copy;
        }
        /// <summary>
        /// Outer product of two vectors
        /// </summary>
        /// <param name="u">First vector</param>
        /// <param name="v">Second vector</param>
        /// <returns>Matrix M[i,j] = u[i]*v[j] </returns>
        /// <exception cref="ArgumentNullException">If the u vector is <see langword="null" />.</exception> 
        /// <exception cref="ArgumentNullException">If the v vector is <see langword="null" />.</exception> 
        /*SparseMatrix*/
        public static Matrix OuterProduct(SparseVector u, SparseVector v)
        {
            if (u == null)
            {
                throw new ArgumentNullException("u");
            }

            if (v == null)
            {
                throw new ArgumentNullException("v");
            }

            throw new NotImplementedException();
            //var matrix = new DenseMatrix(u.Count, v.Count);
            //CommonParallel.For(
            //    0,
            //    u.Count,
            //    i =>
            //    {
            //        for (int j = 0; j < v.Count; j++)
            //        {
            //            matrix.At(i, j, u.Data[i] * v.Data[j]);
            //        }
            //    });
            //return matrix;
        }
Exemplo n.º 26
0
        /// <summary>
        /// Outer product of two vectors
        /// </summary>
        /// <param name="u">First vector</param>
        /// <param name="v">Second vector</param>
        /// <returns>Matrix M[i,j] = u[i]*v[j] </returns>
        /// <exception cref="ArgumentNullException">If the u vector is <see langword="null" />.</exception> 
        /// <exception cref="ArgumentNullException">If the v vector is <see langword="null" />.</exception> 
        /*SparseMatrix*/
        public static Matrix OuterProduct(SparseVector u, SparseVector v)
        {
            if (u == null)
            {
                throw new ArgumentNullException("u");
            }

            if (v == null)
            {
                throw new ArgumentNullException("v");
            }

            var matrix = new SparseMatrix(u.Count, v.Count);
            for (var i = 0; i < u.NonZerosCount; i++)
            {
                for (var j = 0; j < v.NonZerosCount; j++)
                {
                    if (u._nonZeroIndices[i] == v._nonZeroIndices[j])
                    {
                        matrix.At(i, j, u._nonZeroValues[i] * v._nonZeroValues[j]);
                    }
                }
            }

            return matrix;
        }
Exemplo n.º 27
0
 public RatingVector(Vector<double> ratingVector)
 {
     this.ratingVector = ratingVector.Storage.IsDense ? SparseVector.OfVector(ratingVector) : (SparseVector)ratingVector;
 }
Exemplo n.º 28
0
        /// <summary>
        /// Multiplies a scalar to each element of the vector.
        /// </summary>
        /// <param name="scalar">The scalar to multiply.</param>
        /// <returns>A new vector that is the multiplication of the vector and the scalar.</returns>
        public override Vector<double> Multiply(double scalar)
        {
            if (scalar == 1.0)
            {
                return Clone();
            }

            if (scalar == 0)
            {
                return new SparseVector(Count);
            }

            var copy = new SparseVector(this);
            Control.LinearAlgebraProvider.ScaleArray(scalar, copy._nonZeroValues, copy._nonZeroValues);
            return copy;
        }
Exemplo n.º 29
0
 /// <summary>
 /// Converts the string representation of a real sparse vector to double-precision sparse vector equivalent.
 /// A return value indicates whether the conversion succeeded or failed.
 /// </summary>
 /// <param name="value">
 /// A string containing a real vector to convert.
 /// </param>
 /// <param name="result">
 /// The parsed value.
 /// </param>
 /// <returns>
 /// If the conversion succeeds, the result will contain a complex number equivalent to value.
 /// Otherwise the result will be <c>null</c>.
 /// </returns>
 public static bool TryParse(string value, out SparseVector result)
 {
     return TryParse(value, null, out result);
 }
Exemplo n.º 30
0
        /// <summary>
        /// Returns a negated vector.
        /// </summary>
        /// <returns>The negated vector.</returns>
        /// <remarks>Added as an alternative to the unary negation operator.</remarks>
        public override Vector<double> Negate()
        {
            var result = new SparseVector(Count)
                         {
                             _nonZeroValues = new double[NonZerosCount],
                             _nonZeroIndices = new int[NonZerosCount],
                             NonZerosCount = NonZerosCount
                         };

            if (NonZerosCount != 0)
            {
                CommonParallel.For(
                    0,
                    NonZerosCount,
                    index => result._nonZeroValues[index] = -_nonZeroValues[index]);

                Buffer.BlockCopy(_nonZeroIndices, 0, result._nonZeroIndices, 0, NonZerosCount * Constants.SizeOfInt);
            }

            return result;
        }
Exemplo n.º 31
0
 /// <summary>
 /// Outer product of this and another vector.
 /// </summary>
 /// <param name="v">The vector to operate on.</param>
 /// <returns>
 /// Matrix M[i,j] = this[i] * v[j].
 /// </returns>
 public Matrix<double> OuterProduct(SparseVector v)
 {
     return OuterProduct(this, v);
 }
Exemplo n.º 32
0
        /// <summary>
        /// Creates a vector containing specified elements.
        /// </summary>
        /// <param name="index">The first element to begin copying from.</param>
        /// <param name="length">The number of elements to copy.</param>
        /// <returns>A vector containing a copy of the specified elements.</returns>
        /// <exception cref="ArgumentOutOfRangeException"><list><item>If <paramref name="index"/> is not positive or
        /// greater than or equal to the size of the vector.</item>
        /// <item>If <paramref name="index"/> + <paramref name="length"/> is greater than or equal to the size of the vector.</item>
        /// </list></exception>
        /// <exception cref="ArgumentException">If <paramref name="length"/> is not positive.</exception>
        public override Vector<double> SubVector(int index, int length)
        {
            if (index < 0 || index >= Count)
            {
                throw new ArgumentOutOfRangeException("index");
            }

            if (length <= 0)
            {
                throw new ArgumentOutOfRangeException("length");
            }

            if (index + length > Count)
            {
                throw new ArgumentOutOfRangeException("length");
            }

            var result = new SparseVector(length);
            for (var i = index; i < index + length; i++)
            {
                result.At(i - index, At(i));
            }

            return result;
        }