public void DetermineStatus()
        {
            var criteria = new List<IIterationStopCriterium<Complex>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex>(1)
            };

            var iterator = new Iterator<Complex>(criteria);

            // First step, nothing should happen.
            iterator.DetermineStatus(
                0,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");

            // Second step, should run out of iterations.
            iterator.DetermineStatus(
                1,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.StoppedWithoutConvergence, iterator.Status, "Incorrect status");
        }
Exemplo n.º 2
0
        public void CanSolveForRandomMatrix(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);

            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(1000),
                new ResidualStopCriterium(1e-10));

            var solver = new BiCgStab();
            var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);

            // The solution X row dimension is equal to the column dimension of A
            Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

            // The solution X has the same number of columns as B
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA*matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 1.0e-5);
                    Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 1.0e-5);
                }
            }
        }
Exemplo n.º 3
0
        /// <summary>
        /// Creates a default iterator with all the <see cref="IIterationStopCriterium"/> objects.
        /// </summary>
        /// <returns>A new <see cref="IIterator"/> object.</returns>
        public static IIterator CreateDefault()
        {
            var iterator = new Iterator();
            iterator.Add(new FailureStopCriterium());
            iterator.Add(new DivergenceStopCriterium());
            iterator.Add(new IterationCountStopCriterium());
            iterator.Add(new ResidualStopCriterium());

            return iterator;
        }
Exemplo n.º 4
0
        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.CreateIdentity(100);

            // Create the y vector
            var y = Vector<Complex>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(MaximumIterations),
                new ResidualStopCriterium<Complex>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex>(),
                new FailureStopCriterium<Complex>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
Exemplo n.º 5
0
        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(100);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 10 x 10 grid
            const int GridSize = 10;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = Vector<Complex>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(MaximumIterations),
                new ResidualStopCriterium<Complex>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex>(),
                new FailureStopCriterium<Complex>());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            Assert.LessOrEqual(Distance.Chebyshev(y, z), 2*ConvergenceBoundary);
        }
Exemplo n.º 6
0
        public void CanSolveForRandomVector(int order)
        {
            var matrixA = Matrix<Complex>.Build.Random(order, order, 1);
            var vectorb = Vector<Complex>.Build.Random(order, 1);

            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(1000),
                new ResidualStopCriterium<Complex>(1e-10));

            var solver = new TFQMR();

            var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
            Assert.AreEqual(matrixA.ColumnCount, resultx.Count);

            var matrixBReconstruct = matrixA*resultx;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
                Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
            }
        }
Exemplo n.º 7
0
        public void SolveUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.Identity(100);

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => Complex.One);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(MaximumIterations),
                new ResidualStopCriterium(ConvergenceBoundary),
                new DivergenceStopCriterium(),
                new FailureStopCriterium());

            var solver = new BiCgStab();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
            }
        }
Exemplo n.º 8
0
        public void SolveScaledUnitMatrixAndBackMultiply()
        {
            // Create the identity matrix
            var matrix = SparseMatrix.CreateIdentity(100);

            // Scale it with a funny number
            matrix.Multiply(Math.PI, matrix);

            // Create the y vector
            var y = Vector<Complex>.Build.Dense(matrix.RowCount, 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterion<Complex>(MaximumIterations),
                new ResidualStopCriterion<Complex>(ConvergenceBoundary),
                new DivergenceStopCriterion<Complex>(),
                new FailureStopCriterion<Complex>());

            var solver = new MlkBiCgStab();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i);
            }
        }
Exemplo n.º 9
0
        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(100);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 10 x 10 grid
            const int GridSize = 10;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex>(new IIterationStopCriterium<Complex>[]
                {
                    new IterationCountStopCriterium<Complex>(MaximumIterations),
                    new ResidualStopCriterium(ConvergenceBoundary),
                    new DivergenceStopCriterium(),
                    new FailureStopCriterium()
                });
            var solver = new MlkBiCgStab(monitor);

            // Solve equation Ax = y
            var x = solver.Solve(matrix, y);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.HasConverged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue((y[i] - z[i]).Magnitude.IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
            }
        }
Exemplo n.º 10
0
        public void CanSolveForRandomVector(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

            var monitor = new Iterator<Complex>(new IIterationStopCriterium<Complex>[]
                {
                    new IterationCountStopCriterium<Complex>(1000),
                    new ResidualStopCriterium(1e-10),
                });
            var solver = new MlkBiCgStab(monitor);

            var resultx = solver.Solve(matrixA, vectorb);
            Assert.AreEqual(matrixA.ColumnCount, resultx.Count);

            var matrixBReconstruct = matrixA*resultx;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
                Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
            }
        }
        public void DetermineStatusWithNegativeIterationNumberThrowsArgumentOutOfRangeException()
        {
            var criteria = new List<IIterationStopCriterium<Complex>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex>(),
                new ResidualStopCriterium()
            };
            var iterator = new Iterator<Complex>(criteria);

            Assert.Throws<ArgumentOutOfRangeException>(() => iterator.DetermineStatus(
                -1,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 5),
                DenseVector.Create(3, i => 6)));
        }
        public void ResetToPrecalculationState()
        {
            var criteria = new List<IIterationStopCriterium<Complex>>
            {
                new FailureStopCriterium(),
                new DivergenceStopCriterium(),
                new IterationCountStopCriterium<Complex>(1)
            };

            var iterator = new Iterator<Complex>(criteria);

            // First step, nothing should happen.
            iterator.DetermineStatus(
                0,
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4),
                DenseVector.Create(3, i => 4));
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");

            iterator.Reset();
            Assert.AreEqual(IterationStatus.Continue, iterator.Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[0].Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[1].Status, "Incorrect status");
            Assert.AreEqual(IterationStatus.Continue, criteria[2].Status, "Incorrect status");
        }
 public void DetermineStatusWithoutStopCriteriaDoesNotThrow()
 {
     var iterator = new Iterator<Complex>();
     Assert.DoesNotThrow(() => iterator.DetermineStatus(
         0,
         DenseVector.Create(3, i => 4),
         DenseVector.Create(3, i => 5),
         DenseVector.Create(3, i => 6)));
 }
Exemplo n.º 14
0
        /// <summary>
        /// Solves the matrix equation Ax = b, where A is the coefficient matrix, b is the
        /// solution vector and x is the unknown vector.
        /// </summary>
        /// <param name="matrix">The coefficient matrix, <c>A</c>.</param>
        /// <param name="input">The solution vector, <c>b</c></param>
        /// <param name="result">The result vector, <c>x</c></param>
        /// <param name="iterator">The iterator to use to control when to stop iterating.</param>
        /// <param name="preconditioner">The preconditioner to use for approximations.</param>
        public void Solve(Matrix <Complex> matrix, Vector <Complex> input, Vector <Complex> result, Iterator <Complex> iterator, IPreconditioner <Complex> preconditioner)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare, nameof(matrix));
            }

            if (result.Count != input.Count)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (iterator == null)
            {
                iterator = new Iterator <Complex>();
            }

            if (preconditioner == null)
            {
                preconditioner = new UnitPreconditioner <Complex>();
            }

            // Create a copy of the solution and result vectors so we can use them
            // later on
            var internalInput  = input.Clone();
            var internalResult = result.Clone();

            foreach (var solver in _solvers)
            {
                // Store a reference to the solver so we can stop it.

                IterationStatus status;
                try
                {
                    // Reset the iterator and pass it to the solver
                    iterator.Reset();

                    // Start the solver
                    solver.Item1.Solve(matrix, internalInput, internalResult, iterator, solver.Item2 ?? preconditioner);
                    status = iterator.Status;
                }
                catch (Exception)
                {
                    // The solver broke down.
                    // Log a message about this
                    // Switch to the next preconditioner.
                    // Reset the solution vector to the previous solution
                    input.CopyTo(internalInput);
                    continue;
                }

                // There was no fatal breakdown so check the status
                if (status == IterationStatus.Converged)
                {
                    // We're done
                    internalResult.CopyTo(result);
                    break;
                }

                // We're not done
                // Either:
                // - calculation finished without convergence
                if (status == IterationStatus.StoppedWithoutConvergence)
                {
                    // Copy the internal result to the result vector and
                    // continue with the calculation.
                    internalResult.CopyTo(result);
                }
                else
                {
                    // - calculation failed --> restart with the original vector
                    // - calculation diverged --> restart with the original vector
                    // - Some unknown status occurred --> To be safe restart.
                    input.CopyTo(internalInput);
                }
            }
        }