Exemplo n.º 1
0
        public static void Traverse(TreeNode node, DataRow dt, ref string val)
        {
            string currentval = string.Empty;

            if (node.attribute.values != null)
            {
                currentval = dt[node.attribute.ToString()].ToString();
                bool result = CheckForMissingValue(node.attribute.values, currentval);
                if (result == true)
                {
                    if (node.attribute.postives >= node.attribute.negatives)
                    {
                        val = "1";
                        return;
                    }
                    else if (node.attribute.postives < node.attribute.negatives)
                    {
                        val = "0";
                        return;
                    }
                }
                else
                {

                    for (int i = 0; i < node.attribute.values.Length; i++)
                    {
                        currentval = dt[node.attribute.ToString()].ToString();
                        if (currentval == node.attribute.values[i])
                        {
                            TreeNode childNode = node.getBranchChild(node.attribute.values[i]);

                            Traverse(childNode, dt, ref val);

                        }
                    }

                }
            }

            else
            {

                val = node.attribute.aLabel.ToString();
                return;
            }
        }
Exemplo n.º 2
0
        /*This function is used to print the decision tree*/
        public static void printNode(TreeNode root, string tabs)
        {
            if (root.totalCountOfChilds == 1)
            {
                Console.Write(root.attribute);
                Console.Write(Environment.NewLine);
            }
            else
            {

                Console.Write(tabs + "|" + root.attribute);

            }
            if (root.attribute.values != null)
            {
                for (int i = 0; i < root.attribute.values.Length; i++)
                {

                    if (i > 0)
                    {
                        Console.Write(tabs + "|" + root.attribute + "=" + root.attribute.values[i] + ":");
                    }
                    else
                    {
                        Console.Write("=" + root.attribute.values[i] + ":");
                    }
                    TreeNode childNode = root.getBranchChild(root.attribute.values[i]);
                    if (childNode.totalCountOfChilds > 1)
                    {
                        Console.Write(Environment.NewLine);
                        printNode(childNode, "| \t" + tabs);
                    }
                    else
                    {
                        printNode(childNode, "\t" + tabs);
                    }

                }

            }
        }
Exemplo n.º 3
0
 /*The function adds a node to the Tree*/
 public void AddNode(TreeNode treeNode, string ValueName)
 {
     int index = tAttribute.indexValue(ValueName);
         tChilds[index] = treeNode;
 }
Exemplo n.º 4
0
        /* The function is used to traverse the decision tree*/
        public static void TraverseMain(TreeNode node, string filename, ArrayList attributenames, string filetype, ref DataTable result, int colNumber)
        {
            DataTable dt = getDataTable(filename, attributenames);

            string val = string.Empty;

            for (int j = 0; j < dt.Rows.Count; j++)
            {
                val = string.Empty;
                Traverse(node, dt.Rows[j], ref val);
                result.Rows[j][colNumber] = val;

            }
        }
Exemplo n.º 5
0
        /*This function is used to construct the tree amd is called recursively*/
        private TreeNode constructTree(DataTable samples, string resultLabel, Attribute[] attributes, string filename, ArrayList attributenames)
        {
            if (tuplePositiveTest(samples, resultLabel) == true) /* check if all tuples belong to class label 1*/
                return new TreeNode(new Attribute("1"));

            if (tupleNegativeTest(samples, resultLabel) == true) /* check if all tuples belong to class label 1*/
                return new TreeNode(new Attribute("0"));

            TotalTuples = samples.Rows.Count;
            resultClass = resultLabel;
            TotalPositives = countPositiveClass(samples);
            int mnegative = TotalTuples - TotalPositives;
            /*Below are the conditions that check when attribute set is empty or tuples are over etc.,*/
            if (attributes.Length == 0 && TotalPositives == mnegative)
                return new TreeNode(new Attribute(getMostCommonValue(samples, resultLabel)));
            else if (attributes.Length == 0 && TotalPositives == mnegative)
                return new TreeNode(new Attribute(getMostCommonValue(getDataTable(filename, attributenames), resultLabel)));

            else if (samples.Rows.Count == 0)
                return new TreeNode(new Attribute(getMostCommonValue(getDataTable(filename, attributenames), resultLabel)));

            Entropy = calcEntropy(TotalPositives, TotalTuples - TotalPositives);
            /*To find the best attribute*/
            Attribute bestAttribute = getSplittingAttribute(samples, attributes);
            if (bestAttribute == null && TotalPositives == mnegative)
            {

                return new TreeNode(new Attribute(getMostCommonValue(getDataTable(filename, attributenames), resultLabel)));
            }
            else if (bestAttribute == null && TotalPositives != mnegative)
            {
                return new TreeNode(new Attribute(getMostCommonValue(samples, resultLabel)));
            }
            TreeNode root = new TreeNode(bestAttribute);

            DataTable aSample = samples.Clone();
            bestAttribute.postives = TotalPositives;
            bestAttribute.negatives = mnegative;
            /*Loop through all possible attribute values to split based on the above best attribute obtained */
            foreach (string value in bestAttribute.values)
            {

                aSample.Rows.Clear();

                DataRow[] rows = samples.Select(bestAttribute.AttributeName + " = " + "'" + value + "'");

                foreach (DataRow row in rows)
                {
                    aSample.Rows.Add(row.ItemArray);
                }
                ArrayList aAttributes = new ArrayList(attributes.Length - 1);
                for (int i = 0; i < attributes.Length; i++)
                {
                    if (attributes[i].AttributeName != bestAttribute.AttributeName)
                        aAttributes.Add(attributes[i]);
                }

                DecisionID3 dc3 = new DecisionID3();
                TreeNode child = dc3.MainTree(aSample, resultLabel, (Attribute[])aAttributes.ToArray(typeof(Attribute)), filename, attributenames);
                root.AddNode(child, value);

            }

            return root;
        }