Exemplo n.º 1
0
        /// <summary>
        /// 分类问题中产生的如果是概率,需要把概率转换为编码结果
        /// 后面再解码得到最终的分类
        /// </summary>
        /// <param name="probability">概率</param>
        /// <param name="code">编码</param>
        public static void ProbabilityToCode(TensorOld probability, TensorOld code)
        {
            if (probability.Rank == 1)
            {
                probability = probability.Reshape(1, probability.ElementCount);
            }

            if (probability.Rank != 2)
            {
                throw new Exception("to do codec, Rank must be 2");
            }

            if (probability.shape[1] == 1)
            {
                TensorOld.Apply(probability, code, a => a > 0.5 ? 1 : 0);
            }
            else
            {
                var buff = new double[probability.shape[1]];
                for (int i = 0; i < probability.shape[0]; i++)
                {
                    probability.GetByDim1(i, buff);
                    ComputeCode(buff);
                    Array.Copy(buff, 0, code.GetRawValues(), i * buff.Length, buff.Length);
                }
            }
        }
Exemplo n.º 2
0
        public List <double> PredictValue(TensorOld X)
        {
            X             = Normalize(X);
            LastRawResult = Model.Predict(X);

            LastCodecResult = Utilities.ProbabilityToCode(LastRawResult);
            return(LastCodecResult.GetRawValues().ToList());
        }
Exemplo n.º 3
0
 private static bool RowEqual(TensorOld t1, TensorOld t2, int start, int len)
 {
     for (int i = 0; i < len; i++)
     {
         if (t1.GetRawValues()[start + i] != t2.GetRawValues()[start + i])
         {
             return(false);
         }
     }
     return(true);
 }
Exemplo n.º 4
0
        private void SetTrainingData(TensorOld trainX, TensorOld trainY, TensorOld testX, TensorOld testY)
        {
            if (Normalizer != null)
            {
                TrainX = Normalizer.Normalize(trainX);
                if (testX != null)
                {
                    TestX = Normalizer.Normalize(testX);
                }
            }
            else
            {
                TrainX = trainX;
                TestX  = testX;
            }
            if (LabelCodec != null)
            {
                TrainY = LabelCodec.Encode(trainY.GetRawValues());
                if (testY != null)
                {
                    TestY = LabelCodec.Encode(testY.GetRawValues());
                }
            }
            else
            {
                TrainY = trainY;
                TestY  = testY;
            }

            var shape = TrainX.Shape;

            shape[0] = BatchSize;
            xBuff    = new TensorOld(shape);
            yBuff    = new TensorOld(BatchSize, TrainY.shape[1]);

            sampleCount = TrainX.shape[0];
            xWidth      = TrainX.ElementCount / TrainX.shape[0];
            yWidth      = TrainY.ElementCount / TrainY.shape[0];

            batchPerEpoch = trainX.shape[0] / BatchSize;
            if (trainX.shape[0] % BatchSize != 0)
            {
                batchPerEpoch++;
            }
        }
Exemplo n.º 5
0
 private void CopyToBatch(int trainIndex, int batchIndex)
 {
     Array.Copy(TrainX.GetRawValues(), trainIndex * xWidth, xBuff.GetRawValues(), batchIndex * xWidth, xWidth);
     Array.Copy(TrainY.GetRawValues(), trainIndex * yWidth, yBuff.GetRawValues(), batchIndex * yWidth, yWidth);
 }