Exemplo n.º 1
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (m_Brain == null)
            {
                return;
            }

            m_Info.storedVectorActions = m_Action.vectorActions;
            m_ActionMasker.ResetMask();
            UpdateSensors();
            using (TimerStack.Instance.Scoped("CollectObservations"))
            {
                CollectObservations();
            }
            m_Info.actionMasks = m_ActionMasker.GetMask();

            m_Info.reward         = m_Reward;
            m_Info.done           = m_Done;
            m_Info.maxStepReached = m_MaxStepReached;
            m_Info.id             = m_Id;

            m_Brain.RequestDecision(m_Info, sensors, UpdateAgentAction);

            if (m_Recorder != null && m_Recorder.record && Application.isEditor)
            {
                m_Recorder.WriteExperience(m_Info, sensors);
            }
        }
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (m_Brain == null)
            {
                return;
            }

            m_Info.memories            = m_Action.memories;
            m_Info.storedVectorActions = m_Action.vectorActions;
            m_Info.storedTextActions   = m_Action.textActions;
            m_Info.vectorObservation.Clear();
            m_Info.compressedObservations.Clear();
            m_ActionMasker.ResetMask();
            using (TimerStack.Instance.Scoped("CollectObservations"))
            {
                CollectObservations();
            }
            m_Info.actionMasks = m_ActionMasker.GetMask();

            var param = m_PolicyFactory.brainParameters;

            if (m_Info.vectorObservation.Count != param.vectorObservationSize)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Vector Observation size mismatch in continuous " +
                                                   "agent {0}. " +
                                                   "Was Expecting {1} but received {2}. ",
                                                   gameObject.name,
                                                   param.vectorObservationSize,
                                                   m_Info.vectorObservation.Count));
            }

            Utilities.ShiftLeft(m_Info.stackedVectorObservation, param.vectorObservationSize);
            Utilities.ReplaceRange(m_Info.stackedVectorObservation, m_Info.vectorObservation,
                                   m_Info.stackedVectorObservation.Count - m_Info.vectorObservation.Count);

            m_Info.reward         = m_Reward;
            m_Info.done           = m_Done;
            m_Info.maxStepReached = m_MaxStepReached;
            m_Info.id             = m_Id;

            m_Brain.RequestDecision(this);

            if (m_Recorder != null && m_Recorder.record && Application.isEditor)
            {
                // This is a bit of a hack - if we're in inference mode, compressed observations won't be generated
                // But we need these to be generated for the recorder. So generate them here.
                if (m_Info.compressedObservations.Count == 0)
                {
                    GenerateSensorData();
                }

                m_Recorder.WriteExperience(m_Info);
            }

            m_Info.textObservation = "";
        }
Exemplo n.º 3
0
        void NotifyAgentDone(bool maxStepReached = false)
        {
            m_Info.reward         = m_Reward;
            m_Info.done           = true;
            m_Info.maxStepReached = maxStepReached;
            // Request the last decision with no callbacks
            // We request a decision so Python knows the Agent is done immediately
            m_Brain?.RequestDecision(m_Info, sensors);

            if (m_Recorder != null && m_Recorder.record && Application.isEditor)
            {
                m_Recorder.WriteExperience(m_Info, sensors);
            }

            UpdateRewardStats();

            // The Agent is done, so we give it a new episode Id
            m_EpisodeId        = EpisodeIdCounter.GetEpisodeId();
            m_Reward           = 0f;
            m_CumulativeReward = 0f;
            m_RequestAction    = false;
            m_RequestDecision  = false;
        }
Exemplo n.º 4
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (m_Brain == null)
            {
                return;
            }

            m_Info.storedVectorActions = m_Action.vectorActions;
            m_ActionMasker.ResetMask();
            UpdateSensors();
            using (TimerStack.Instance.Scoped("CollectObservations"))
            {
                CollectObservations();
            }
            m_Info.actionMasks = m_ActionMasker.GetMask();

            // var param = m_PolicyFactory.brainParameters; // look, no brain params!

            m_Info.reward         = m_Reward;
            m_Info.done           = m_Done;
            m_Info.maxStepReached = m_MaxStepReached;
            m_Info.id             = m_Id;

            m_Brain.RequestDecision(m_Info, sensors, UpdateAgentAction);

            if (m_Recorder != null && m_Recorder.record && Application.isEditor)
            {
                if (m_VectorSensorBuffer == null)
                {
                    // Create a buffer for writing uncompressed (i.e. float) sensor data to
                    m_VectorSensorBuffer = new float[sensors.GetSensorFloatObservationSize()];
                }

                // This is a bit of a hack - if we're in inference mode, observations won't be generated
                // But we need these to be generated for the recorder. So generate them here.
                var observations = new List <Observation>();
                GenerateSensorData(sensors, m_VectorSensorBuffer, m_WriteAdapter, observations);

                m_Recorder.WriteExperience(m_Info, observations);
            }
        }
Exemplo n.º 5
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (m_Brain == null)
            {
                return;
            }

            m_Info.storedVectorActions = m_Action.vectorActions;
            m_Info.observations.Clear();
            m_ActionMasker.ResetMask();
            UpdateSensors();
            using (TimerStack.Instance.Scoped("CollectObservations"))
            {
                CollectObservations();
            }
            m_Info.actionMasks = m_ActionMasker.GetMask();

            // var param = m_PolicyFactory.brainParameters; // look, no brain params!

            m_Info.reward         = m_Reward;
            m_Info.done           = m_Done;
            m_Info.maxStepReached = m_MaxStepReached;
            m_Info.id             = m_Id;

            m_Brain.RequestDecision(this);

            if (m_Recorder != null && m_Recorder.record && Application.isEditor)
            {
                // This is a bit of a hack - if we're in inference mode, observations won't be generated
                // But we need these to be generated for the recorder. So generate them here.
                if (m_Info.observations.Count == 0)
                {
                    GenerateSensorData();
                }

                m_Recorder.WriteExperience(m_Info);
            }
        }
Exemplo n.º 6
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (brain == null)
            {
                return;
            }

            info.memories            = action.memories;
            info.storedVectorActions = action.vectorActions;
            info.storedTextActions   = action.textActions;
            info.vectorObservation.Clear();
            actionMasker.ResetMask();
            CollectObservations();
            info.actionMasks = actionMasker.GetMask();

            BrainParameters param = brain.brainParameters;

            if (info.vectorObservation.Count != param.vectorObservationSize)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Vector Observation size mismatch between continuous " +
                                                   "agent {0} and brain {1}. " +
                                                   "Was Expecting {2} but received {3}. ",
                                                   gameObject.name, brain.name,
                                                   brain.brainParameters.vectorObservationSize,
                                                   info.vectorObservation.Count));
            }

            info.stackedVectorObservation.RemoveRange(
                0, param.vectorObservationSize);
            info.stackedVectorObservation.AddRange(info.vectorObservation);

            info.visualObservations.Clear();
            var visualObservationCount = agentParameters.agentCameras.Count + agentParameters.agentRenderTextures.Count;

            if (param.cameraResolutions.Length > visualObservationCount)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Not enough cameras/renderTextures for agent {0} : Brain {1} expecting at " +
                                                   "least {2} cameras/renderTextures but only {3} were present.",
                                                   gameObject.name, brain.name,
                                                   brain.brainParameters.cameraResolutions.Length,
                                                   visualObservationCount));
            }

            //First add all cameras
            for (int i = 0; i < agentParameters.agentCameras.Count; i++)
            {
                ObservationToTexture(
                    agentParameters.agentCameras[i],
                    param.cameraResolutions[i].width,
                    param.cameraResolutions[i].height,
                    ref textureArray[i]);
                info.visualObservations.Add(textureArray[i]);
            }

            //Then add all renderTextures
            var camCount = agentParameters.agentCameras.Count;

            for (int i = 0; i < agentParameters.agentRenderTextures.Count; i++)
            {
                ObservationToTexture(
                    agentParameters.agentRenderTextures[i],
                    param.cameraResolutions[camCount + i].width,
                    param.cameraResolutions[camCount + i].height,
                    ref textureArray[i]);
                info.visualObservations.Add(textureArray[i]);
            }

            info.reward         = reward;
            info.done           = done;
            info.maxStepReached = maxStepReached;
            info.id             = id;

            brain.SendState(this, info);

            if (recorder != null && recorder.record && Application.isEditor)
            {
                recorder.WriteExperience(info);
            }

            info.textObservation = "";
        }
Exemplo n.º 7
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (brain == null)
            {
                return;
            }

            m_Info.memories            = m_Action.memories;
            m_Info.storedVectorActions = m_Action.vectorActions;
            m_Info.storedTextActions   = m_Action.textActions;
            m_Info.vectorObservation.Clear();
            m_ActionMasker.ResetMask();
            CollectObservations();
            m_Info.actionMasks = m_ActionMasker.GetMask();

            var param = brain.brainParameters;

            if (m_Info.vectorObservation.Count != param.vectorObservationSize)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Vector Observation size mismatch between continuous " +
                                                   "agent {0} and brain {1}. " +
                                                   "Was Expecting {2} but received {3}. ",
                                                   gameObject.name, brain.name,
                                                   brain.brainParameters.vectorObservationSize,
                                                   m_Info.vectorObservation.Count));
            }

            Utilities.ShiftLeft(m_Info.stackedVectorObservation, param.vectorObservationSize);
            Utilities.ReplaceRange(m_Info.stackedVectorObservation, m_Info.vectorObservation,
                                   m_Info.stackedVectorObservation.Count - m_Info.vectorObservation.Count);

            m_Info.visualObservations.Clear();
            var visualObservationCount = agentParameters.agentCameras.Count + agentParameters.agentRenderTextures.Count;

            if (param.cameraResolutions.Length > visualObservationCount)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Not enough cameras/renderTextures for agent {0} : Brain {1} expecting at " +
                                                   "least {2} cameras/renderTextures but only {3} were present.",
                                                   gameObject.name, brain.name,
                                                   brain.brainParameters.cameraResolutions.Length,
                                                   visualObservationCount));
            }

            //First add all cameras
            for (var i = 0; i < agentParameters.agentCameras.Count; i++)
            {
                var obsTexture = ObservationToTexture(
                    agentParameters.agentCameras[i],
                    param.cameraResolutions[i].width,
                    param.cameraResolutions[i].height);
                m_Info.visualObservations.Add(obsTexture);
            }

            //Then add all renderTextures
            var camCount = agentParameters.agentCameras.Count;

            for (var i = 0; i < agentParameters.agentRenderTextures.Count; i++)
            {
                var obsTexture = ObservationToTexture(
                    agentParameters.agentRenderTextures[i],
                    param.cameraResolutions[camCount + i].width,
                    param.cameraResolutions[camCount + i].height);
                m_Info.visualObservations.Add(obsTexture);
            }

            m_Info.reward         = m_Reward;
            m_Info.done           = m_Done;
            m_Info.maxStepReached = m_MaxStepReached;
            m_Info.id             = m_Id;

            brain.SendState(this, m_Info);

            if (m_Recorder != null && m_Recorder.record)
            {
                m_Recorder.WriteExperience(m_Info);
            }

            m_Info.textObservation = "";
        }