Exemplo n.º 1
0
		/*
         * Z = log(X). or z = log(x) elementwise log
         */
		public static void Log(SparseMatrix Z, SparseMatrix X)
		{
			// Dimension check
			if (Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Dimension mismatch.");
			}
			// Computation
			for (int IdxCol = 0; IdxCol < Z.nCols; IdxCol++)
			{
				var nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
				var zKey = Z.SparseColumnVectors[IdxCol].Key;
				var xKey = X.SparseColumnVectors[IdxCol].Key;
				var zVal = Z.SparseColumnVectors[IdxCol].Val;
				var xVal = X.SparseColumnVectors[IdxCol].Val;
				for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
				{
					if (zKey[IdxRow] != xKey[IdxRow])
					{
						throw new Exception("Sparse patterns do not match in elementwise matrix multiplication.");
					}
					zVal[IdxRow] = (float) Math.Log( (double) (xVal[IdxRow]));
				}
			}
		}
Exemplo n.º 2
0
		/*
         * Compute the training error at the given batch
         */
		public static int ComputeNumberOfErrors(SparseMatrix Dt, DenseMatrix y)
		{
			if (Dt.nCols != y.nCols)
			{
				throw new Exception("The numbers of samples from label and prediction do not match.");
			}
			int nTotError = 0;
			int[] PredictedClass = y.IndexOfVerticalMax();
			for (int IdxCol = 0; IdxCol < Dt.nCols; IdxCol++)
			{
				if (Dt.SparseColumnVectors[IdxCol].Key[0] != PredictedClass[IdxCol])
				{
					nTotError++;
				}
			}
			return nTotError;
		}
Exemplo n.º 3
0
		/*
         * Z = X * y (scalar)
         */
		public static void ScalarMultiplyMatrix(SparseMatrix Z, SparseMatrix X, float y)
		{
			// Dimension check
			if (Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Dimension mismatch.");
			}
			// Computation
			Parallel.For(0, Z.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					int nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxRow] = xVal[IdxRow] * y;
					}
				});
		}
Exemplo n.º 4
0
		public static void ElementwiseSquare(SparseMatrix Z)
		{
			int nCols = Z.nCols;
			int nRows = Z.nRows;
			Parallel.For(0, nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					int nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxRow] *= zVal[IdxRow];
					}
				});
		}
Exemplo n.º 5
0
		public static void ElementwiseMatrixMultiplyMatrix(SparseMatrix Z, SparseMatrix X, DenseMatrix Y)
		{
			// Dimension check
			if (X.nCols != Y.nCols || X.nRows != Y.nRows || Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Dimension mismatch during elementwise matrix multiplication.");
			}
			// Elementwise matrix multiplication
			Parallel.For(0, Z.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					var yVal = Y.DenseMatrixValue[IdxCol].VectorValue;
					var zKey = Z.SparseColumnVectors[IdxCol].Key;
					int nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxRow]
						= xVal[IdxRow] * yVal[zKey[IdxRow]];
					}
				});
		}
Exemplo n.º 6
0
		public static void VerticalMaxMatrix(DenseRowVector z, SparseMatrix X)
		{
			int zDim = z.Dim;
			var zVal = z.VectorValue;
			var XMat = X.SparseColumnVectors;
			Parallel.For(0, zDim, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					zVal[IdxCol] = XMat[IdxCol].Val.Max();
				});
		}
Exemplo n.º 7
0
		// This constructor performs deep copy from the source sparse matrix
		public SparseMatrix(SparseMatrix SourceSparseMatrix)
		{
			nRows = SourceSparseMatrix.nRows;
			nCols = SourceSparseMatrix.nCols;
			SparseColumnVectors = new SparseColumnVector[nCols];
			for (int IdxCol = 0; IdxCol < nCols; IdxCol++)
			{
				SparseColumnVectors[IdxCol] = new SparseColumnVector(SourceSparseMatrix.SparseColumnVectors[IdxCol]);                
			}
			flag_SameSparsePatterForAllColumns = SourceSparseMatrix.flag_SameSparsePatterForAllColumns;
			if (flag_SameSparsePatterForAllColumns)
			{
				SparsePatternOfEachColumn = new int[nRows];
				Array.Copy(SourceSparseMatrix.SparsePatternOfEachColumn, SparsePatternOfEachColumn, nRows);
			}
		}
Exemplo n.º 8
0
		public static void HorizontalSumMatrix(DenseColumnVector z, SparseMatrix X)
		{
			if (z.Dim != X.nRows)
			{
				throw new Exception("Dimension mismatch.");
			}
			Array.Clear(z.VectorValue, 0, z.VectorValue.Length);

			for (int IdxCol = 0; IdxCol < X.nCols; IdxCol++)
			{
				int nNonzero = X.SparseColumnVectors[IdxCol].nNonzero;
				var xKey = X.SparseColumnVectors[IdxCol].Key;
				var xVal = X.SparseColumnVectors[IdxCol].Val;
				var zVal = z.VectorValue;
				for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
				{
					zVal[xKey[IdxRow]] += xVal[IdxRow];
				}
			}
		}
Exemplo n.º 9
0
		/*
         * z = mean(X,2): horizontal mean
         */
		public static DenseColumnVector HorizontalMeanMatrix(SparseMatrix X)
		{
			DenseColumnVector z = HorizontalSumMatrix(X);
			return z;
		}
Exemplo n.º 10
0
		public static void VerticalSumMatrix(DenseRowVector z, SparseMatrix X)
		{
			Array.Clear(z.VectorValue, 0, z.VectorValue.Length);
			Parallel.For(0, X.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = z.VectorValue;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					int nNonzero = X.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxCol] += xVal[IdxRow];
					}
				});
		}
Exemplo n.º 11
0
		public static DenseColumnVector HorizontalSumMatrix(SparseMatrix X)
		{
			DenseColumnVector z = new DenseColumnVector(X.nRows);
			Array.Clear(z.VectorValue, 0, z.VectorValue.Length);

			for (int IdxCol = 0; IdxCol < X.nCols; IdxCol++ )
			{
				int nNonzero = X.SparseColumnVectors[IdxCol].nNonzero;
				var xKey = X.SparseColumnVectors[IdxCol].Key;
				var xVal = X.SparseColumnVectors[IdxCol].Val;
				var zVal = z.VectorValue;
				for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
				{
					zVal[xKey[IdxRow]] += xVal[IdxRow];
				}
			}

			return z;
		}
Exemplo n.º 12
0
		/*
         * Z = X + Y
         */
		public static void MatrixAddMatrix(DenseMatrix Z, DenseMatrix X, SparseMatrix Y)
		{
			// Check dimension
			if (Z.nRows != X.nRows || Z.nCols != X.nCols || Z.nRows != Y.nRows || Z.nCols != Y.nCols)
			{
				throw new Exception("Dimension mismatch.");
			}
			// Computation
			Parallel.For(0, Z.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					Array.Copy(X.DenseMatrixValue[IdxCol].VectorValue, Z.DenseMatrixValue[IdxCol].VectorValue, Z.DenseMatrixValue[IdxCol].VectorValue.Length);
				});
			MatrixAddMatrix(Z, Y);
		}
Exemplo n.º 13
0
		public static void MatrixAddMatrix(SparseMatrix Z, SparseMatrix X)
		{
			// Check dimension
			if (Z.nRows != X.nRows || Z.nCols != X.nCols)
			{
				throw new Exception("Dimension mismatch.");
			}
			// Computation
			Parallel.For(0, Z.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxRow] += xVal[IdxRow];
					}
				});
		}
Exemplo n.º 14
0
		/*
         * Z = X + y (scalar)
         */
		public static void ScalarAddMatrix(SparseMatrix Z, SparseMatrix X, float y)
		{
			// Dimension check
			if (Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Matrix dimension mismatch.");
			}
			// Computation
			Parallel.For(0, X.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					int nNonzero = X.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						//if (Z.SparseColumnVectors[IdxCol].Key[IdxRow] != X.SparseColumnVectors[IdxCol].Key[IdxRow])
						//{
						//    throw new Exception("Sparse patterns do not match.");
						//}
						zVal[IdxRow] = xVal[IdxRow] + y;
					}
				});
		}
Exemplo n.º 15
0
		public static void Exp(SparseMatrix Z)
		{
			int nCols = Z.nCols;
			int nRows = Z.nRows;
			Parallel.For(0, nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					int nNz = Z.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNz; ++IdxRow)
					{
						zVal[IdxRow] = (float)Math.Exp(zVal[IdxRow]);
					}
				});
		}
Exemplo n.º 16
0
		public static void bsxfunVectorMultiplyMatrix(SparseMatrix X, DenseRowVector y)
		{
			if (X.nCols != y.Dim)
			{
				throw new Exception("Dimension mismatch.");
			}
			Parallel.For(0, X.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					var yVal = y.VectorValue[IdxCol];
					var nNonzero = X.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						xVal[IdxRow] *= yVal;
					}
				});
		}
Exemplo n.º 17
0
		/* 
         * Z = X^T * Y
         * Matrix transpose mulplication
         */
		public static void MatrixTransposeMultiplyMatrix(DenseMatrix Z,DenseMatrix X, SparseMatrix Y)
		{
			// Dimension check
			if (X.nRows != Y.nRows || Z.nRows != X.nCols || Z.nCols != Y.nCols)
			{
				throw new Exception("Dimension mismatch.");
			}
			// Computation
			int total = Z.nCols * Z.nRows;
			int process_len = (total + THREADNUM - 1) / THREADNUM;
			Parallel.For(0, THREADNUM, new ParallelOptions{ MaxDegreeOfParallelism = MaxMultiThreadDegree}, thread_idx =>
				{
					for (int t = 0; t < process_len; t++)
					{
						int id = thread_idx * process_len + t;
						if (id < total)
						{
							int IdxCol = id / Z.nRows;
							int IdxRow = id % Z.nRows;
							DenseColumnVector z = Z.DenseMatrixValue[IdxCol];
							var x = X.DenseMatrixValue[IdxRow].VectorValue;
							SparseColumnVector y = Y.SparseColumnVectors[IdxCol];
							var nNonzero = y.nNonzero;
							float sum = 0;
							var yKey = y.Key;
							var yVal = y.Val;
							for (int Idx = 0; Idx < nNonzero; ++ Idx)
							{
								sum += x[yKey[Idx]]
									* yVal[Idx];
							}
							z.VectorValue[IdxRow] = sum;
						}
						else
							break;
					}
				});
		}
Exemplo n.º 18
0
		/*
         * Z = bsxfun(@times, X, y) or Z = X * y, where y is a dense row or column vector
         */
		public static void bsxfunVectorMultiplyMatrix(SparseMatrix Z, SparseMatrix X, DenseRowVector y)
		{
			if (Z.nCols != X.nCols || Z.nRows != X.nRows || Z.nCols != y.Dim)
			{
				throw new Exception("Dimension mismatch!");
			}
			int ZnCols = Z.nCols;
			Parallel.For(0, ZnCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					int nNz = Z.SparseColumnVectors[IdxCol].nNonzero;
					var ZVal = Z.SparseColumnVectors[IdxCol].Val;
					var XVal = X.SparseColumnVectors[IdxCol].Val;
					var yVal = y.VectorValue;
					for (int IdxRow = 0; IdxRow < nNz; ++IdxRow)
					{
						ZVal[IdxRow] = XVal[IdxRow] * yVal[IdxCol];
					}
				});
		}
Exemplo n.º 19
0
		public static void ProjCols2OrthogonalSimplexPlane(SparseMatrix Z, SparseMatrix X)
		{
			if (Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Dimension mismatch.");
			}
			DenseRowVector TmpDenseRowVec = new DenseRowVector(X.nCols);
			MatrixOperation.VerticalSumMatrix(TmpDenseRowVec, X);
			MatrixOperation.ScalarMultiplyVector(TmpDenseRowVec, 1.0f / ((float)X.nRows));
			MatrixOperation.bsxfunMatrixSubtractVector(Z, X, TmpDenseRowVec);
		}
Exemplo n.º 20
0
		public static void bsxfunMatrixSubtractVector(SparseMatrix Z, SparseMatrix X, DenseRowVector y)
		{
			if (Z.nCols != X.nCols || Z.nRows != X.nRows || Z.nCols != y.Dim)
			{
				throw new Exception("Dimension mismatch.");
			}

			int total = Z.nCols;
			int process_len = (total + THREADNUM - 1) / THREADNUM;
			Parallel.For(0, THREADNUM, new ParallelOptions{ MaxDegreeOfParallelism = MaxMultiThreadDegree}, thread_idx =>
				{
					for (int t = 0; t < process_len; t++)
					{
						int IdxCol = thread_idx * process_len + t;
						if (IdxCol < total)
						{
							var zVal = Z.SparseColumnVectors[IdxCol].Val;
							var xVal = X.SparseColumnVectors[IdxCol].Val;
							var yVal = y.VectorValue[IdxCol];
							int nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
							for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
							{
								zVal[IdxRow] = xVal[IdxRow] - yVal;
							}
						}
					}
				});
		}
Exemplo n.º 21
0
		public SparseMatrix GetColumns(int[] IdxColumns)
		{
			SparseMatrix SubMatrix = new SparseMatrix(nRows, IdxColumns.Length);
			if (SubMatrix.nCols != IdxColumns.Length)
			{
				throw new Exception("Number of desired columns is not equal to the target SubMatrix!");
			}
			for (int IdxCol = 0; IdxCol < IdxColumns.Length; IdxCol++)
			{
				Array.Copy(SparseColumnVectors, IdxColumns[IdxCol], SubMatrix.SparseColumnVectors, IdxCol, 1);
			}
			return SubMatrix;
		}
Exemplo n.º 22
0
		/*
         * Z = X*Y, where X and Y are dense. 
         * Only nonzero positions of Z will be computed if Z is sparse.
         */
		public static void MatrixMultiplyMatrix(SparseMatrix Z, DenseMatrix X, DenseMatrix Y)
		{
			// Dimension check
			if (Z.nRows != X.nRows || Z.nCols != Y.nCols || X.nCols != Y.nRows)
			{
				throw new Exception("Matrix dimension mismatch in multiplication.");
			}

			int total = Z.nCols ;
			int process_len = (total + THREADNUM - 1) / THREADNUM;
			Parallel.For(0, THREADNUM, new ParallelOptions{ MaxDegreeOfParallelism = MaxMultiThreadDegree}, thread_idx =>
				{
					for (int t = 0; t < process_len; t++)
					{
						int IdxCol = thread_idx * process_len + t;
						if (IdxCol < total)
						{
							var yVector = Y.DenseMatrixValue[IdxCol].VectorValue;
							SparseColumnVector z = Z.SparseColumnVectors[IdxCol];
							var zVal = z.Val;
							var zKey = z.Key;
							int nNonzero = z.nNonzero;
							for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
							{
								zVal[IdxRow] = 0;
							}
							for (int Idx = 0; Idx < X.nCols; ++ Idx)
							{
								// Compute the (IdxTrueRow, IdxCol)-th entry of Z, stored at (IdxRow, IdxCol)
								var xVector = X.DenseMatrixValue[Idx].VectorValue;
								var y = yVector[Idx];
								for (int IdxRow = 0; IdxRow < nNonzero; ++ IdxRow)
								{
									// Get the actual row index of Z
									zVal[IdxRow] += xVector[zKey[IdxRow]] * y;
								}
							}

						}
						else
							break;
					}
				});
		}
Exemplo n.º 23
0
		/*
         * Z = X.*Y
         */
		public static void ElementwiseMatrixMultiplyMatrix(SparseMatrix Z, SparseMatrix X, SparseMatrix Y)
		{
			// Dimension check
			if (X.nCols != Y.nCols || X.nRows != Y.nRows || Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Dimension mismatch during elementwise matrix multiplication.");
			}
			// Elementwise matrix multiplication
			for (int IdxCol = 0; IdxCol < Z.nCols; IdxCol++)
			{
				for (int IdxRow = 0; IdxRow < Z.SparseColumnVectors[IdxCol].nNonzero; IdxRow++)
				{
					if (Z.SparseColumnVectors[IdxCol].Key[IdxRow] != X.SparseColumnVectors[IdxCol].Key[IdxRow] 
						|| Z.SparseColumnVectors[IdxCol].Key[IdxRow] != Y.SparseColumnVectors[IdxCol].Key[IdxRow])
					{
						throw new Exception("Sparse patterns do not match in elementwise matrix multiplication.");
					}
					Z.SparseColumnVectors[IdxCol].Val[IdxRow] = X.SparseColumnVectors[IdxCol].Val[IdxRow] * Y.SparseColumnVectors[IdxCol].Val[IdxRow];
				}
			}
		}
Exemplo n.º 24
0
		/*
         * Z  = X * Y^T if IsCumSum == false
         * Z += X * Y^T is IsCumSum == true
         */
		public static void MatrixMultiplyMatrixTranspose(DenseMatrix Z, SparseMatrix X, DenseMatrix Y, bool IsCumSum)
		{
			if (Z.nRows != X.nRows || Z.nCols != Y.nRows || X.nCols != Y.nCols)
			{
				throw new Exception("Dimension mismatch.");
			}
			int total = Z.nCols;
			int process_len = (total + THREADNUM - 1) / THREADNUM;
			Parallel.For(0, THREADNUM, new ParallelOptions{ MaxDegreeOfParallelism = MaxMultiThreadDegree}, thread_idx =>
				{
					for (int t = 0; t < process_len; t++)
					{
						int IdxCol = thread_idx * process_len + t;
						if (IdxCol < total)
						{
							DenseColumnVector z = Z.DenseMatrixValue[IdxCol];
							if (!IsCumSum) Array.Clear(z.VectorValue, 0, Z.nRows);
							for (int Idx = 0; Idx < X.nCols; Idx++)
							{
								SparseColumnVector x = X.SparseColumnVectors[Idx];
								float yvalue = Y.DenseMatrixValue[Idx].VectorValue[IdxCol];
								for (int IdxRow = 0; IdxRow < x.nNonzero; IdxRow++)
								{
									z.VectorValue[x.Key[IdxRow]] += x.Val[IdxRow] * yvalue;
								}
							}
						}
						else
							break;
					}
				});
		}
Exemplo n.º 25
0
		public static void ElementwiseMatrixMultiplyMatrix(DenseMatrix Z, SparseMatrix X)
		{
			if (Z.nCols != X.nCols || Z.nRows != X.nRows)
			{
				throw new Exception("Dimension mismatch.");
			}
			Parallel.For(0, Z.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					int nNz = X.SparseColumnVectors[IdxCol].nNonzero;
					var xKey = X.SparseColumnVectors[IdxCol].Key;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					var zVal = Z.DenseMatrixValue[IdxCol].VectorValue;
					for (int IdxRow = 0; IdxRow < nNz; ++IdxRow)
					{
						zVal[xKey[IdxRow]] *= xVal[IdxRow];
					}
				}
			);
		}
Exemplo n.º 26
0
		public static void MatrixMultiplyMatrixTranspose(SparseMatrix Z, SparseMatrix X, DenseMatrix Y, bool IsCumSum)
		{
			if (Z.nRows != X.nRows || Z.nCols != Y.nRows || X.nCols != Y.nCols)
			{
				throw new Exception("Dimension mismatch.");
			}

			int total = Z.nCols;
			int process_len = (total + THREADNUM - 1) / THREADNUM;
			Parallel.For(0, THREADNUM, new ParallelOptions{ MaxDegreeOfParallelism = MaxMultiThreadDegree}, thread_idx =>
				{
					var ZSparsePatternOfEachColumn = Z.SparsePatternOfEachColumn;
					var xnCols = X.nCols;
					for (int t = 0; t < process_len; ++t)
					{
						int IdxCol = thread_idx * process_len + t;
						if (IdxCol < total)
						{
							SparseColumnVector z = Z.SparseColumnVectors[IdxCol];
							var zVal = z.Val;
							if (!IsCumSum) Array.Clear(zVal, 0, z.nNonzero);
							for (int Idx = 0; Idx < xnCols; ++Idx)
							{
								float yvalue = Y.DenseMatrixValue[Idx].VectorValue[IdxCol];
								var xKey = X.SparseColumnVectors[Idx].Key;
								var xVal = X.SparseColumnVectors[Idx].Val;
								var xnNonzero = X.SparseColumnVectors[Idx].nNonzero;
								for (int IdxRow = 0; IdxRow < xnNonzero; ++IdxRow)
								{
									int xkey = xKey[IdxRow];
									float xvalue = xVal[IdxRow];
									zVal[ZSparsePatternOfEachColumn[xkey]]
									+= xvalue * yvalue;
								}
							}
						}
						else
							break;
					}
				});

		}
Exemplo n.º 27
0
		/*
         * Z = X ./ Y
         * Elementwise division
         */
		public static void ElementwiseMatrixDivideMatrix(SparseMatrix Z, SparseMatrix X, SparseMatrix Y)
		{
			// Dimension check
			if (Z.nCols != X.nCols || Z.nRows != X.nRows || Z.nCols != Y.nCols || Z.nRows != Y.nRows)
			{
				throw new Exception("Dimension mismatch.");
			}
			// Computation
			int nCols = Z.nCols;
			Parallel.For(0, nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					var xVal = X.SparseColumnVectors[IdxCol].Val;
					var yVal = Y.SparseColumnVectors[IdxCol].Val;
					int nNonzero = Z.SparseColumnVectors[IdxCol].nNonzero;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxRow] = xVal[IdxRow] / (yVal[IdxRow]+1e-12f);
					}
				});
		}
Exemplo n.º 28
0
		/*
         * Z += a * x * y^T : Atomic add & thread safe, where x and y are column vectors, and a is a scalar.
         */
		public static void AtomicAddVectorMultiplyVectorTranspose(SparseMatrix Z, SparseColumnVector x, DenseColumnVector y, float a)
		{
			if (Z.nRows != x.Dim || Z.nCols != y.Dim)
			{
				throw new Exception("Dimension mismatch.");
			}
			float product = 0.0f;
			float InitVal = 0.0f;
			float ComputedVal = 0.0f;
			int ZnCols = Z.nCols;
			int xNz = x.nNonzero;
			var xVal = x.Val;
			var xKey = x.Key;
			var yVal = y.VectorValue;
			var ZSparseColumnPattern = Z.SparsePatternOfEachColumn;
			for (int IdxCol = 0; IdxCol < ZnCols; ++IdxCol)
			{
				var ZVal = Z.SparseColumnVectors[IdxCol].Val;
				for (int IdxRow = 0; IdxRow < xNz; ++IdxRow)
				{
					product = xVal[IdxRow] * yVal[IdxCol] * a;
					int ZIdx = ZSparseColumnPattern[xKey[IdxRow]];
					do
					{
						InitVal = ZVal[ZIdx];
						ComputedVal = InitVal + product;
					} while (InitVal != Interlocked.CompareExchange(ref ZVal[ZIdx], ComputedVal, InitVal));
				}
			}
		}
Exemplo n.º 29
0
		public static void MatrixSubtractMatrix(SparseMatrix Z, SparseMatrix Y)
		{
			if (Z.nRows != Y.nRows || Z.nCols != Y.nCols)
			{
				throw new Exception("Dimension mismatch.");
			}
			Parallel.For(0, Z.nCols, new ParallelOptions { MaxDegreeOfParallelism = MaxMultiThreadDegree }, IdxCol =>
				{
					int nNonzero = Y.SparseColumnVectors[IdxCol].nNonzero;
					var zVal = Z.SparseColumnVectors[IdxCol].Val;
					var yVal = Y.SparseColumnVectors[IdxCol].Val;
					for (int IdxRow = 0; IdxRow < nNonzero; ++IdxRow)
					{
						zVal[IdxRow] -= yVal[IdxRow];
					}
				});
		}
Exemplo n.º 30
0
		public static float ComputeSupervisedLoss(SparseMatrix Dt, SparseMatrix y, string OutputType)
		{
			if (Dt.nCols != y.nCols || Dt.nRows != y.nRows)
			{
				throw new Exception("The numbers of samples from label and prediction do not match.");
			}
			SparseMatrix SparseMat = new SparseMatrix(y);
			SparseMatrix TmpSparseMat = new SparseMatrix(Dt);
			DenseRowVector TmpDenseRowVec = new DenseRowVector(Dt.nCols);
			float TrainingLoss = 0.0f;
			switch (OutputType)
			{
			case "softmaxCE":
				MatrixOperation.ScalarAddMatrix(SparseMat, y, 1e-20f);
				MatrixOperation.Log(SparseMat);
				MatrixOperation.ElementwiseMatrixMultiplyMatrix(TmpSparseMat, Dt, SparseMat);
				MatrixOperation.VerticalSumMatrix(TmpDenseRowVec, TmpSparseMat);
				TrainingLoss = TmpDenseRowVec.Sum() * (-1.0f);
				break;
			case "linearQuad":
				MatrixOperation.MatrixSubtractMatrix(SparseMat, Dt);
				MatrixOperation.ElementwiseSquare(SparseMat);
				MatrixOperation.VerticalSumMatrix(TmpDenseRowVec, SparseMat);
				TrainingLoss = TmpDenseRowVec.Sum();
				break;
			case "linearCE":
				MatrixOperation.ScalarAddMatrix(SparseMat, y, 1e-20f);
				MatrixOperation.Log(SparseMat);
				MatrixOperation.ElementwiseMatrixMultiplyMatrix(TmpSparseMat, Dt, SparseMat);
				MatrixOperation.VerticalSumMatrix(TmpDenseRowVec, TmpSparseMat);
				TrainingLoss = TmpDenseRowVec.Sum() * (-1.0f);
				break;
			default:
				throw new Exception("Unknown OutputType.");
			}

			return TrainingLoss;
		}