Exemplo n.º 1
0
        /// <summary>
        /// Construct a new nearest neighbour iterator.
        /// </summary>
        /// <param name="pRoot">The root of the tree to begin searching from.</param>
        /// <param name="tSearchPoint">The point in n-dimensional space to search.</param>
        /// <param name="distance_function">The distance function used to evaluate the points.</param>
        /// <param name="max_result_count">The max number of points which can be returned by this iterator.  Capped to max in tree.</param>
        /// <param name="threshold">Threshold to apply to the search space.  Negative numbers indicate that no threshold is applied.</param>
        public NearestNeighbourEnumerator(DistanceType distance_zero, KDNode <DomainType, DistanceType, LabelType> pRoot, DomainType[] tSearchPoint, IFunctionDistance <DomainType[], DistanceType> distance_function, int max_result_count, DistanceType threshold, bool use_threshold)
        {
            // Check the dimensionality of the search point.
            if (tSearchPoint.Length != pRoot.d_dimension_count)
            {
                throw new Exception("Dimensionality of search point and kd-tree are not the same.");
            }

            //this.algebra_domain = algebra;

            // Store the search point.
            this.search_point = new DomainType[tSearchPoint.Length];
            Array.Copy(tSearchPoint, this.search_point, tSearchPoint.Length);

            // Store the point count, distance function and tree root.
            this.iPointsRemaining = Math.Min(max_result_count, pRoot.Size);
            this.fThreshold       = threshold;
            this.d_use_threshold  = use_threshold;

            this.distance_function  = distance_function;
            this.pRoot              = pRoot;
            this.iMaxPointsReturned = max_result_count;

            this._CurrentDistance       = distance_zero;
            this.d_current_distance_set = false;
            this.distance_zero          = distance_zero;
            // Create an interval heap for the points we check.
            this.pEvaluated = new IntervalHeap <LabelType, DistanceType>();

            // Create a min heap for the things we need to check.
            this.pPending = new MinHeap <KDNode <DomainType, DistanceType, LabelType>, DistanceType>();
            this.pPending.Insert(distance_zero, pRoot);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Reset the iterator.
        /// </summary>
        public void Reset()
        {
            // Store the point count and the distance function.
            this.iPointsRemaining  = Math.Min(iMaxPointsReturned, pRoot.Size);
            _CurrentDistance       = distance_zero;
            d_current_distance_set = false;

            // Create an interval heap for the points we check.
            this.pEvaluated = new IntervalHeap <LabelType, DistanceType>();

            // Create a min heap for the things we need to check.
            this.pPending = new MinHeap <KDNode <DomainType, DistanceType, LabelType>, DistanceType>();
            this.pPending.Insert(distance_zero, pRoot);
        }