Exemplo n.º 1
0
        public static SampleValue MassCompileSample(Symbol outSymbol, SampleValue inSample, Netlist netlist, Style style)
        {
            //inSample.Consume(null, 0, null, netlist, style); // this prevents simulating a sample and its massaction version in succession
            List <ReactionValue> inReactions = inSample.RelevantReactions(netlist, style);
            CRN inCrn = new CRN(inSample, inReactions);

            Gui.Log(Environment.NewLine + inCrn.FormatNice(style));

            (Lst <Polynomize.ODE> odes, Lst <Polynomize.Equation> eqs)             = Polynomize.FromCRN(inCrn);
            (Lst <Polynomize.PolyODE> polyOdes, Lst <Polynomize.Equation> polyEqs) = Polynomize.PolynomizeODEs(odes, eqs.Reverse(), style);
            Gui.Log("Polynomize:" + Environment.NewLine + Polynomize.PolyODE.Format(polyOdes, style)
                    + "Initial:" + Environment.NewLine + Polynomize.Equation.Format(polyEqs, style));

            (Lst <Polynomize.PolyODE> posOdes, Lst <Polynomize.Equation> posEqs, Dictionary <Symbol, SpeciesFlow> dict, Lst <Positivize.Subst> substs) = Positivize.PositivizeODEs(polyOdes, polyEqs, style);
            Gui.Log("Positivize:" + Environment.NewLine + Polynomize.PolyODE.Format(posOdes, style)
                    + "Initial:" + Environment.NewLine + Polynomize.Equation.Format(posEqs, style));

            Lst <ReactionValue> outReactions = Hungarize.ToReactions(posOdes, style);

            Gui.Log("Hungarize:" + Environment.NewLine + outReactions.FoldR((r, s) => { return(r.FormatNormal(style) + Environment.NewLine + s); }, "")
                    + "Initial:" + Environment.NewLine + Polynomize.Equation.Format(posEqs, style));

            SampleValue outSample = new SampleValue(outSymbol, new StateMap(outSymbol, new List <SpeciesValue> {
            }, new State(0, lna: inSample.stateMap.state.lna)), new NumberValue(inSample.Volume()), new NumberValue(inSample.Temperature()), produced: true);

            netlist.Emit(new SampleEntry(outSample));
            posOdes.Each(ode => {
                Flow initFlow = Polynomize.Equation.ToFlow(ode.var, posEqs, style).Normalize(style);
                double init; if (initFlow is NumberFlow num)
                {
                    init = num.value;
                }
                else
                {
                    throw new Error("Cannot generate a simulatable sample because initial values contain constants (but the symbolic version has been generated assuming constants are nonnegative).");
                }
                if (init < 0)
                {
                    throw new Error("Negative initial value of Polynomized ODE for: " + Polynomize.Lookup(ode.var, eqs, style).Format(style) + " = " + init + Environment.NewLine + Polynomize.Equation.Format(eqs, style));
                }
                outSample.stateMap.AddDimensionedSpecies(new SpeciesValue(ode.var.species, -1.0), init, 0.0, "M", outSample.Volume(), style);
            });
            outReactions.Each(reaction => { netlist.Emit(new ReactionEntry(reaction)); });

            substs.Each(subst => { ReportEntry report = new ReportEntry(null, OpFlow.Op(subst.plus, "-", subst.minus), null, outSample); outSample.AddReport(report); });
            foreach (KeyValuePair <Symbol, SpeciesFlow> keypair in dict)
            {
                ReportEntry report = new ReportEntry(null, keypair.Value, null, outSample); outSample.AddReport(report);
            }
            ;

            return(outSample);
        }
Exemplo n.º 2
0
        Integrate(Func <double, double, Vector, Func <double, Vector, Vector>, IEnumerable <SolPoint> > Solver,
                  State initialState, double initialTime, double finalTime, Func <double, Vector, Vector> Flux,
                  SampleValue sample, List <ReportEntry> reports, Noise noise, bool nonTrivialSolution, Style style)
        {
            double redrawTick = initialTime; double redrawStep = (finalTime - initialTime) / 50;
            double densityTick = initialTime; double densityStep = (finalTime - initialTime) / 1000;
            int    pointsCounter   = 0;
            int    renderedCounter = 0;
            double lastTime        = finalTime;
            State  lastState       = null;

            if (initialState.NaN())
            {
                Gui.Log("Initial state contains NaN.");
                return(lastTime, lastState);
            }

            KChartHandler.ChartClearData(style);
            (string[] series, string[] seriesLNA) = GenerateSeries(reports, noise, style);
            KChartHandler.LegendUpdate(style);
            KScoreHandler.ScoreUpdate();

            IEnumerable <SolPoint> solution = SolutionGererator(Solver, initialState, initialTime, finalTime, Flux, nonTrivialSolution, style);
            List <TriggerEntry>    triggers = sample.Triggers(style);

            bool[] triggered = new bool[triggers.Count]; for (int i = 0; i < triggers.Count; i++)
            {
                triggered[i] = false;
            }

            // BEGIN foreach (SolPoint solPoint in solution)  -- done by hand to catch exceptions in MoveNext()

            SolPoint solPoint    = new SolPoint(initialTime, initialState.Clone().ToArray());
            bool     hasSolPoint = false;
            var      enumerator  = solution.GetEnumerator();

            do
            {
                // Handle triggers first, they can apply to the initial state
                if (triggers.Count > 0)
                {
                    State state         = null; // allocated on need from solPoint
                    State modifiedState = null; // allocated on need from state
                    for (int i = 0; i < triggers.Count; i++)
                    {
                        if (triggered[i] == false)
                        {
                            TriggerEntry trigger = triggers[i];
                            if (state == null)
                            {
                                state = new State(sample.Count(), lna: noise != Noise.None).InitAll(solPoint.X);
                            }
                            if (trigger.condition.ObserveBool(sample, solPoint.T, state, Flux, style))
                            {
                                if (modifiedState == null)
                                {
                                    modifiedState = state.Clone();
                                }
                                double rawValue   = trigger.assignment.ObserveMean(sample, solPoint.T, state, Flux, style);
                                double assignment = trigger.sample.stateMap.NormalizeDimension(trigger.target, rawValue, trigger.dimension, trigger.sample.Volume(), style);
                                int    index      = sample.stateMap.IndexOf(trigger.target.symbol);
                                modifiedState.SetMean(index, assignment);
                                if (noise != Noise.None && trigger.assignmentVariance != null)
                                {
                                    double rawValueVariance   = trigger.assignmentVariance.ObserveMean(sample, solPoint.T, state, Flux, style);
                                    double assignmentVariance = trigger.sample.stateMap.NormalizeDimension(trigger.target, rawValueVariance, trigger.dimension, trigger.sample.Volume(), style);
                                    modifiedState.SetCovar(index, index, assignmentVariance);
                                }
                                triggered[i] = true;
                            }
                        }
                    }
                    if (modifiedState != null)          //restart the solver
                    {
                        State newState = modifiedState; // new State(sample.Count(), lna: noise != Noise.None).InitAll(modifiedState.ToArray());
                        solution   = SolutionGererator(Solver, newState, solPoint.T, finalTime, Flux, nonTrivialSolution, style);
                        enumerator = solution.GetEnumerator();
                    }
                }

                try {
                    if (!enumerator.MoveNext())
                    {
                        break;
                    }
                    solPoint    = enumerator.Current;    // get next step of integration from solver
                    hasSolPoint = true;
                }
                catch (ConstantEvaluation e) { // stop simulation but allow execution to proceed
                    Gui.Log("Simulation stopped and ignored: cannot evaluate constant '" + e.Message + "'");
                    return(lastTime, lastState);
                }
                catch (Error e) { throw new Error(e.Message); }
                catch (Exception e) { KChartHandler.ChartUpdate(style, false); throw new Error("ODE Solver FAILED: " + e.Message); }
                pointsCounter++;

                // LOOP BODY of foreach (SolPoint solPoint in solution):
                if (!Exec.IsExecuting())
                {
                    KChartHandler.ChartUpdate(style); throw new ExecutionEnded("");
                }                                  // break;

                if (style.chartOutput)             // Plot the new solution point
                {
                    if (solPoint.T >= densityTick) // avoid drawing too many points
                    {
                        State state = new State(sample.Count(), lna: noise != Noise.None).InitAll(solPoint.X);
                        for (int i = 0; i < reports.Count; i++)
                        {
                            if (series[i] != null)   // if a series was actually generated from this report
                            // generate deterministic series
                            {
                                if ((noise == Noise.None && reports[i].flow.HasDeterministicValue()) ||
                                    (noise != Noise.None && reports[i].flow.HasStochasticMean()))
                                {
                                    double mean = reports[i].flow.ObserveMean(sample, solPoint.T, state, Flux, style);
                                    KChartHandler.ChartAddPoint(series[i], solPoint.T, mean, 0.0, Noise.None);
                                }
                                // generate LNA-dependent series
                                if (noise != Noise.None && reports[i].flow.HasStochasticVariance() && !reports[i].flow.HasNullVariance())
                                {
                                    double mean     = reports[i].flow.ObserveMean(sample, solPoint.T, state, Flux, style);
                                    double variance = reports[i].flow.ObserveVariance(sample, solPoint.T, state, style);
                                    KChartHandler.ChartAddPoint(seriesLNA[i], solPoint.T, mean, variance, noise);
                                }
                            }
                        }
                        renderedCounter++;
                        densityTick += densityStep;
                    }
                    if (solPoint.T >= redrawTick)   // avoid redrawing the plot too often
                    {
                        KChartHandler.ChartUpdate(style, incremental: true);
                        redrawTick += redrawStep;
                    }
                }

                lastTime = solPoint.T;

                // END foreach (SolPoint solPoint in solution)
            } while (true);

            if (hasSolPoint)
            {
                lastState = new State(sample.Count(), lna: noise != Noise.None).InitAll(solPoint.X);
            }
            KChartHandler.ChartUpdate(style, incremental: false);

            return(lastTime, lastState);
        }