public override float CalculateTimeOfImpact(CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        {
	        ///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold

	        ///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
	        ///body0.m_worldTransform,
	        float resultFraction = 1.0f;


	        float squareMot0 = (body0.GetInterpolationWorldTransform().Translation - body0.GetWorldTransform().Translation).LengthSquared();
	        float squareMot1 = (body1.GetInterpolationWorldTransform().Translation - body1.GetWorldTransform().Translation).LengthSquared();

	        if (squareMot0 < body0.GetCcdSquareMotionThreshold() &&
		        squareMot1 < body1.GetCcdSquareMotionThreshold())
            {
		        return resultFraction;
            }

	        //An adhoc way of testing the Continuous Collision Detection algorithms
	        //One object is approximated as a sphere, to simplify things
	        //Starting in penetration should report no time of impact
	        //For proper CCD, better accuracy and handling of 'allowed' penetration should be added
	        //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)


	        /// Convex0 against sphere for Convex1
	        {
		        ConvexShape convex0 = (ConvexShape)(body0.GetCollisionShape());

		        SphereShape	sphere1 = new SphereShape(body1.GetCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
		        CastResult result = new CastResult();
		        VoronoiSimplexSolver voronoiSimplex = new VoronoiSimplexSolver();
		        //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
		        ///Simplification, one object is simplified as a sphere
		        GjkConvexCast ccd1 = new GjkConvexCast( convex0 ,sphere1,voronoiSimplex);
		        //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
		        if (ccd1.CalcTimeOfImpact(body0.GetWorldTransform(),body0.GetInterpolationWorldTransform(),
			        body1.GetWorldTransform(),body1.GetInterpolationWorldTransform(),result))
		        {

			        //store result.m_fraction in both bodies

			        if (body0.GetHitFraction()> result.m_fraction)
                    {
				        body0.SetHitFraction( result.m_fraction );
                    }

			        if (body1.GetHitFraction() > result.m_fraction)
                    {
				        body1.SetHitFraction( result.m_fraction);
                    }

			        if (resultFraction > result.m_fraction)
                    {
				        resultFraction = result.m_fraction;
                    }

		        }
	        }

	        /// Sphere (for convex0) against Convex1
	        {
		        ConvexShape convex1 = (ConvexShape)(body1.GetCollisionShape());

		        SphereShape	sphere0 = new SphereShape(body0.GetCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
		        CastResult result = new CastResult();
		        VoronoiSimplexSolver voronoiSimplex = new VoronoiSimplexSolver();
		        //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
		        ///Simplification, one object is simplified as a sphere
		        GjkConvexCast ccd1 = new GjkConvexCast(sphere0,convex1,voronoiSimplex);
		        //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
		        if (ccd1.CalcTimeOfImpact(body0.GetWorldTransform(),body0.GetInterpolationWorldTransform(),
			        body1.GetWorldTransform(),body1.GetInterpolationWorldTransform(),result))
		        {

			        //store result.m_fraction in both bodies

			        if (body0.GetHitFraction()	> result.m_fraction)
                    {
				        body0.SetHitFraction( result.m_fraction);
                    }

			        if (body1.GetHitFraction() > result.m_fraction)
                    {
				        body1.SetHitFraction( result.m_fraction);
                    }

			        if (resultFraction > result.m_fraction)
                    {
				        resultFraction = result.m_fraction;
                    }

		        }
	        }

	        return resultFraction;
        }