private AlpsGeneticAlgorithm(AlpsGeneticAlgorithm original, Cloner cloner)
     : base(original, cloner)
 {
     qualityAnalyzer              = cloner.Clone(original.qualityAnalyzer);
     layerQualityAnalyzer         = cloner.Clone(original.layerQualityAnalyzer);
     ageAnalyzer                  = cloner.Clone(original.ageAnalyzer);
     layerAgeAnalyzer             = cloner.Clone(original.layerAgeAnalyzer);
     ageDistributionAnalyzer      = cloner.Clone(original.ageDistributionAnalyzer);
     layerAgeDistributionAnalyzer = cloner.Clone(original.layerAgeDistributionAnalyzer);
     generationsTerminator        = cloner.Clone(original.generationsTerminator);
     evaluationsTerminator        = cloner.Clone(original.evaluationsTerminator);
     qualityTerminator            = cloner.Clone(original.qualityTerminator);
     executionTimeTerminator      = cloner.Clone(original.executionTimeTerminator);
     Initialize();
 }
Exemplo n.º 2
0
 private AlpsOffspringSelectionGeneticAlgorithm(AlpsOffspringSelectionGeneticAlgorithm original, Cloner cloner)
     : base(original, cloner)
 {
     qualityAnalyzer                = cloner.Clone(original.qualityAnalyzer);
     layerQualityAnalyzer           = cloner.Clone(original.layerQualityAnalyzer);
     ageAnalyzer                    = cloner.Clone(original.ageAnalyzer);
     layerAgeAnalyzer               = cloner.Clone(original.layerAgeAnalyzer);
     ageDistributionAnalyzer        = cloner.Clone(original.ageDistributionAnalyzer);
     layerAgeDistributionAnalyzer   = cloner.Clone(original.layerAgeDistributionAnalyzer);
     selectionPressureAnalyzer      = cloner.Clone(original.selectionPressureAnalyzer);
     layerSelectionPressureAnalyzer = cloner.Clone(original.layerSelectionPressureAnalyzer);
     currentSuccessRatioAnalyzer    = cloner.Clone(original.currentSuccessRatioAnalyzer);
     generationsTerminator          = cloner.Clone(original.generationsTerminator);
     evaluationsTerminator          = cloner.Clone(original.evaluationsTerminator);
     qualityTerminator              = cloner.Clone(original.qualityTerminator);
     executionTimeTerminator        = cloner.Clone(original.executionTimeTerminator);
     Initialize();
 }
    public AlpsGeneticAlgorithm()
      : base() {
      #region Add parameters
      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));

      Parameters.Add(new FixedValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze all individuals from all layers combined.", new MultiAnalyzer()));
      Parameters.Add(new FixedValueParameter<MultiAnalyzer>("LayerAnalyzer", "The operator used to analyze each layer.", new MultiAnalyzer()));

      Parameters.Add(new ValueParameter<IntValue>("NumberOfLayers", "The number of layers.", new IntValue(10)));
      Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions in each layer.", new IntValue(100)));

      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
      Parameters.Add(new ValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
      Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true });
      Parameters.Add(new ValueParameter<BoolValue>("PlusSelection", "Include the parents in the selection of the invividuals for the next generation.", new BoolValue(false)));

      Parameters.Add(new ValueParameter<EnumValue<AgingScheme>>("AgingScheme", "The aging scheme for setting the age-limits for the layers.", new EnumValue<AgingScheme>(ALPS.AgingScheme.Polynomial)));
      Parameters.Add(new ValueParameter<IntValue>("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers.", new IntValue(20)));
      Parameters.Add(new ValueParameter<DoubleValue>("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent.", new DoubleValue(1.0)) { Hidden = true });
      Parameters.Add(new ValueParameter<IntArray>("AgeLimits", "The maximum age an individual is allowed to reach in a certain layer.", new IntArray(new int[0])) { Hidden = true });

      Parameters.Add(new ValueParameter<IntValue>("MatingPoolRange", "The range of layers used for creating a mating pool. (1 = current + previous layer)", new IntValue(1)) { Hidden = true });
      Parameters.Add(new ValueParameter<BoolValue>("ReduceToPopulationSize", "Reduce the CurrentPopulationSize after elder migration to PopulationSize", new BoolValue(true)) { Hidden = true });

      Parameters.Add(new ValueParameter<MultiTerminator>("Terminator", "The termination criteria that defines if the algorithm should continue or stop.", new MultiTerminator()));
      #endregion

      #region Create operators
      var globalRandomCreator = new RandomCreator();
      var layer0Creator = new SubScopesCreator() { Name = "Create Layer Zero" };
      var layer0Processor = new SubScopesProcessor();
      var localRandomCreator = new LocalRandomCreator();
      var layerSolutionsCreator = new SolutionsCreator();
      var initializeAgeProcessor = new UniformSubScopesProcessor();
      var initializeAge = new VariableCreator() { Name = "Initialize Age" };
      var initializeCurrentPopulationSize = new SubScopesCounter() { Name = "Initialize CurrentPopulationCounter" };
      var initializeLocalEvaluatedSolutions = new Assigner() { Name = "Initialize LayerEvaluatedSolutions" };
      var initializeGlobalEvaluatedSolutions = new DataReducer() { Name = "Initialize EvaluatedSolutions" };
      var resultsCollector = new ResultsCollector();
      var mainLoop = new AlpsGeneticAlgorithmMainLoop();
      #endregion

      #region Create and parameterize operator graph
      OperatorGraph.InitialOperator = globalRandomCreator;

      globalRandomCreator.RandomParameter.ActualName = "GlobalRandom";
      globalRandomCreator.SeedParameter.Value = null;
      globalRandomCreator.SeedParameter.ActualName = SeedParameter.Name;
      globalRandomCreator.SetSeedRandomlyParameter.Value = null;
      globalRandomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
      globalRandomCreator.Successor = layer0Creator;

      layer0Creator.NumberOfSubScopesParameter.Value = new IntValue(1);
      layer0Creator.Successor = layer0Processor;

      layer0Processor.Operators.Add(localRandomCreator);
      layer0Processor.Successor = initializeGlobalEvaluatedSolutions;

      localRandomCreator.Successor = layerSolutionsCreator;

      layerSolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
      layerSolutionsCreator.Successor = initializeAgeProcessor;

      initializeAgeProcessor.Operator = initializeAge;
      initializeAgeProcessor.Successor = initializeCurrentPopulationSize;

      initializeCurrentPopulationSize.ValueParameter.ActualName = "CurrentPopulationSize";
      initializeCurrentPopulationSize.Successor = initializeLocalEvaluatedSolutions;

      initializeAge.CollectedValues.Add(new ValueParameter<DoubleValue>("Age", new DoubleValue(0)));
      initializeAge.Successor = null;

      initializeLocalEvaluatedSolutions.LeftSideParameter.ActualName = "LayerEvaluatedSolutions";
      initializeLocalEvaluatedSolutions.RightSideParameter.ActualName = "CurrentPopulationSize";
      initializeLocalEvaluatedSolutions.Successor = null;

      initializeGlobalEvaluatedSolutions.ReductionOperation.Value.Value = ReductionOperations.Sum;
      initializeGlobalEvaluatedSolutions.TargetOperation.Value.Value = ReductionOperations.Assign;
      initializeGlobalEvaluatedSolutions.ParameterToReduce.ActualName = "LayerEvaluatedSolutions";
      initializeGlobalEvaluatedSolutions.TargetParameter.ActualName = "EvaluatedSolutions";
      initializeGlobalEvaluatedSolutions.Successor = resultsCollector;

      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
      resultsCollector.Successor = mainLoop;

      mainLoop.GlobalRandomParameter.ActualName = "GlobalRandom";
      mainLoop.LocalRandomParameter.ActualName = localRandomCreator.LocalRandomParameter.Name;
      mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
      mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
      mainLoop.LayerAnalyzerParameter.ActualName = LayerAnalyzerParameter.Name;
      mainLoop.NumberOfLayersParameter.ActualName = NumberOfLayersParameter.Name;
      mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
      mainLoop.CurrentPopulationSizeParameter.ActualName = "CurrentPopulationSize";
      mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
      mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
      mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
      mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mainLoop.ElitesParameter.ActualName = ElitesParameter.Name;
      mainLoop.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name;
      mainLoop.PlusSelectionParameter.ActualName = PlusSelectionParameter.Name;
      mainLoop.AgeParameter.ActualName = "Age";
      mainLoop.AgeGapParameter.ActualName = AgeGapParameter.Name;
      mainLoop.AgeInheritanceParameter.ActualName = AgeInheritanceParameter.Name;
      mainLoop.AgeLimitsParameter.ActualName = AgeLimitsParameter.Name;
      mainLoop.MatingPoolRangeParameter.ActualName = MatingPoolRangeParameter.Name;
      mainLoop.ReduceToPopulationSizeParameter.ActualName = ReduceToPopulationSizeParameter.Name;
      mainLoop.TerminatorParameter.ActualName = TerminatorParameter.Name;
      #endregion

      #region Set selectors
      foreach (var selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(s => !(s is IMultiObjectiveSelector)).OrderBy(s => Name))
        SelectorParameter.ValidValues.Add(selector);
      var defaultSelector = SelectorParameter.ValidValues.OfType<GeneralizedRankSelector>().FirstOrDefault();
      if (defaultSelector != null) {
        defaultSelector.PressureParameter.Value = new DoubleValue(4.0);
        SelectorParameter.Value = defaultSelector;
      }
      #endregion

      #region Create analyzers
      qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
      layerQualityAnalyzer = new BestAverageWorstQualityAnalyzer();
      ageAnalyzer = new OldestAverageYoungestAgeAnalyzer();
      layerAgeAnalyzer = new OldestAverageYoungestAgeAnalyzer();
      ageDistributionAnalyzer = new AgeDistributionAnalyzer();
      layerAgeDistributionAnalyzer = new AgeDistributionAnalyzer();
      #endregion

      #region Create terminators
      generationsTerminator = new ComparisonTerminator<IntValue>("Generations", ComparisonType.Less, new IntValue(1000)) { Name = "Generations" };
      evaluationsTerminator = new ComparisonTerminator<IntValue>("EvaluatedSolutions", ComparisonType.Less, new IntValue(int.MaxValue)) { Name = "Evaluations" };
      qualityTerminator = new SingleObjectiveQualityTerminator() { Name = "Quality" };
      executionTimeTerminator = new ExecutionTimeTerminator(this, new TimeSpanValue(TimeSpan.FromMinutes(5)));
      #endregion

      #region Parameterize
      UpdateAnalyzers();
      ParameterizeAnalyzers();

      ParameterizeSelectors();

      UpdateTerminators();

      ParameterizeAgeLimits();
      #endregion

      Initialize();
    }
 private AlpsGeneticAlgorithm(AlpsGeneticAlgorithm original, Cloner cloner)
   : base(original, cloner) {
   qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
   layerQualityAnalyzer = cloner.Clone(original.layerQualityAnalyzer);
   ageAnalyzer = cloner.Clone(original.ageAnalyzer);
   layerAgeAnalyzer = cloner.Clone(original.layerAgeAnalyzer);
   ageDistributionAnalyzer = cloner.Clone(original.ageDistributionAnalyzer);
   layerAgeDistributionAnalyzer = cloner.Clone(original.layerAgeDistributionAnalyzer);
   generationsTerminator = cloner.Clone(original.generationsTerminator);
   evaluationsTerminator = cloner.Clone(original.evaluationsTerminator);
   qualityTerminator = cloner.Clone(original.qualityTerminator);
   executionTimeTerminator = cloner.Clone(original.executionTimeTerminator);
   Initialize();
 }
Exemplo n.º 5
0
        public AlpsOffspringSelectionGeneticAlgorithm()
            : base()
        {
            #region Add parameters
            Parameters.Add(new FixedValueParameter <IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
            Parameters.Add(new FixedValueParameter <BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));

            Parameters.Add(new FixedValueParameter <MultiAnalyzer>("Analyzer", "The operator used to analyze all individuals from all layers combined.", new MultiAnalyzer()));
            Parameters.Add(new FixedValueParameter <MultiAnalyzer>("LayerAnalyzer", "The operator used to analyze each layer.", new MultiAnalyzer()));

            Parameters.Add(new FixedValueParameter <IntValue>("NumberOfLayers", "The number of layers.", new IntValue(10)));
            Parameters.Add(new FixedValueParameter <IntValue>("PopulationSize", "The size of the population of solutions in each layer.", new IntValue(100)));

            Parameters.Add(new ConstrainedValueParameter <ISelector>("Selector", "The operator used to select solutions for reproduction."));
            Parameters.Add(new ConstrainedValueParameter <ICrossover>("Crossover", "The operator used to cross solutions."));
            Parameters.Add(new ConstrainedValueParameter <IManipulator>("Mutator", "The operator used to mutate solutions."));
            Parameters.Add(new FixedValueParameter <PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
            Parameters.Add(new FixedValueParameter <IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
            Parameters.Add(new FixedValueParameter <BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false))
            {
                Hidden = true
            });

            Parameters.Add(new FixedValueParameter <DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved.", new DoubleValue(1)));
            Parameters.Add(new FixedValueParameter <DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1].", new DoubleValue(1)));
            Parameters.Add(new FixedValueParameter <DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm.", new DoubleValue(100)));
            Parameters.Add(new FixedValueParameter <BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation.", new BoolValue(false)));
            Parameters.Add(new FixedValueParameter <IntValue>("SelectedParents", "How much parents should be selected each time the offspring selection step is performed until the population is filled. This parameter should be about the same or twice the size of PopulationSize for smaller problems, and less for large problems.", new IntValue(200)));
            Parameters.Add(new FixedValueParameter <BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false))
            {
                Hidden = true
            });

            Parameters.Add(new FixedValueParameter <EnumValue <AgingScheme> >("AgingScheme", "The aging scheme for setting the age-limits for the layers.", new EnumValue <AgingScheme>(ALPS.AgingScheme.Polynomial)));
            Parameters.Add(new FixedValueParameter <IntValue>("AgeGap", "The frequency of reseeding the lowest layer and scaling factor for the age-limits for the layers.", new IntValue(20)));
            Parameters.Add(new FixedValueParameter <DoubleValue>("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent.", new DoubleValue(1.0))
            {
                Hidden = true
            });
            Parameters.Add(new FixedValueParameter <IntArray>("AgeLimits", "The maximum age an individual is allowed to reach in a certain layer.", new IntArray(new int[0]))
            {
                Hidden = true
            });

            Parameters.Add(new FixedValueParameter <IntValue>("MatingPoolRange", "The range of layers used for creating a mating pool. (1 = current + previous layer)", new IntValue(1))
            {
                Hidden = true
            });
            Parameters.Add(new FixedValueParameter <BoolValue>("ReduceToPopulationSize", "Reduce the CurrentPopulationSize after elder migration to PopulationSize", new BoolValue(true))
            {
                Hidden = true
            });

            Parameters.Add(new FixedValueParameter <MultiTerminator>("Terminator", "The termination criteria that defines if the algorithm should continue or stop.", new MultiTerminator()));
            #endregion

            #region Create operators
            var globalRandomCreator = new RandomCreator();
            var layer0Creator       = new SubScopesCreator()
            {
                Name = "Create Layer Zero"
            };
            var layer0Processor        = new SubScopesProcessor();
            var localRandomCreator     = new LocalRandomCreator();
            var layerSolutionsCreator  = new SolutionsCreator();
            var initializeAgeProcessor = new UniformSubScopesProcessor();
            var initializeAge          = new VariableCreator()
            {
                Name = "Initialize Age"
            };
            var initializeCurrentPopulationSize = new SubScopesCounter()
            {
                Name = "Initialize CurrentPopulationCounter"
            };
            var initializeLocalEvaluatedSolutions = new Assigner()
            {
                Name = "Initialize LayerEvaluatedSolutions"
            };
            var initializeGlobalEvaluatedSolutions = new DataReducer()
            {
                Name = "Initialize EvaluatedSolutions"
            };
            var resultsCollector = new ResultsCollector();
            var mainLoop         = new AlpsOffspringSelectionGeneticAlgorithmMainLoop();
            #endregion

            #region Create and parameterize operator graph
            OperatorGraph.InitialOperator = globalRandomCreator;

            globalRandomCreator.RandomParameter.ActualName          = "GlobalRandom";
            globalRandomCreator.SeedParameter.Value                 = null;
            globalRandomCreator.SeedParameter.ActualName            = SeedParameter.Name;
            globalRandomCreator.SetSeedRandomlyParameter.Value      = null;
            globalRandomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
            globalRandomCreator.Successor = layer0Creator;

            layer0Creator.NumberOfSubScopesParameter.Value = new IntValue(1);
            layer0Creator.Successor = layer0Processor;

            layer0Processor.Operators.Add(localRandomCreator);
            layer0Processor.Successor = initializeGlobalEvaluatedSolutions;

            localRandomCreator.Successor = layerSolutionsCreator;

            layerSolutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
            layerSolutionsCreator.Successor = initializeAgeProcessor;

            initializeAgeProcessor.Operator  = initializeAge;
            initializeAgeProcessor.Successor = initializeCurrentPopulationSize;

            initializeCurrentPopulationSize.ValueParameter.ActualName = "CurrentPopulationSize";
            initializeCurrentPopulationSize.Successor = initializeLocalEvaluatedSolutions;

            initializeAge.CollectedValues.Add(new ValueParameter <DoubleValue>("Age", new DoubleValue(0)));
            initializeAge.Successor = null;

            initializeLocalEvaluatedSolutions.LeftSideParameter.ActualName  = "LayerEvaluatedSolutions";
            initializeLocalEvaluatedSolutions.RightSideParameter.ActualName = "CurrentPopulationSize";
            initializeLocalEvaluatedSolutions.Successor = null;

            initializeGlobalEvaluatedSolutions.ReductionOperation.Value.Value = ReductionOperations.Sum;
            initializeGlobalEvaluatedSolutions.TargetOperation.Value.Value    = ReductionOperations.Assign;
            initializeGlobalEvaluatedSolutions.ParameterToReduce.ActualName   = "LayerEvaluatedSolutions";
            initializeGlobalEvaluatedSolutions.TargetParameter.ActualName     = "EvaluatedSolutions";
            initializeGlobalEvaluatedSolutions.Successor = resultsCollector;

            resultsCollector.CollectedValues.Add(new LookupParameter <IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
            resultsCollector.Successor = mainLoop;

            mainLoop.GlobalRandomParameter.ActualName          = "GlobalRandom";
            mainLoop.LocalRandomParameter.ActualName           = localRandomCreator.LocalRandomParameter.Name;
            mainLoop.EvaluatedSolutionsParameter.ActualName    = "EvaluatedSolutions";
            mainLoop.AnalyzerParameter.ActualName              = AnalyzerParameter.Name;
            mainLoop.LayerAnalyzerParameter.ActualName         = LayerAnalyzerParameter.Name;
            mainLoop.NumberOfLayersParameter.ActualName        = NumberOfLayersParameter.Name;
            mainLoop.PopulationSizeParameter.ActualName        = PopulationSizeParameter.Name;
            mainLoop.CurrentPopulationSizeParameter.ActualName = "CurrentPopulationSize";
            mainLoop.SelectorParameter.ActualName              = SelectorParameter.Name;
            mainLoop.CrossoverParameter.ActualName             = CrossoverParameter.Name;
            mainLoop.MutatorParameter.ActualName             = MutatorParameter.Name;
            mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
            mainLoop.ElitesParameter.ActualName                           = ElitesParameter.Name;
            mainLoop.ReevaluateElitesParameter.ActualName                 = ReevaluateElitesParameter.Name;
            mainLoop.SuccessRatioParameter.ActualName                     = SuccessRatioParameter.Name;
            mainLoop.ComparisonFactorParameter.ActualName                 = ComparisonFactorParameter.Name;
            mainLoop.MaximumSelectionPressureParameter.ActualName         = MaximumSelectionPressureParameter.Name;
            mainLoop.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
            mainLoop.FillPopulationWithParentsParameter.ActualName        = FillPopulationWithParentsParameter.Name;
            mainLoop.AgeParameter.ActualName                    = "Age";
            mainLoop.AgeGapParameter.ActualName                 = AgeGapParameter.Name;
            mainLoop.AgeInheritanceParameter.ActualName         = AgeInheritanceParameter.Name;
            mainLoop.AgeLimitsParameter.ActualName              = AgeLimitsParameter.Name;
            mainLoop.MatingPoolRangeParameter.ActualName        = MatingPoolRangeParameter.Name;
            mainLoop.ReduceToPopulationSizeParameter.ActualName = ReduceToPopulationSizeParameter.Name;
            mainLoop.TerminatorParameter.ActualName             = TerminatorParameter.Name;
            #endregion

            #region Set operators
            foreach (var selector in ApplicationManager.Manager.GetInstances <ISelector>().Where(s => !(s is IMultiObjectiveSelector)).OrderBy(s => Name))
            {
                SelectorParameter.ValidValues.Add(selector);
            }
            var defaultSelector = SelectorParameter.ValidValues.OfType <GeneralizedRankSelector>().FirstOrDefault();
            if (defaultSelector != null)
            {
                defaultSelector.PressureParameter.Value = new DoubleValue(4.0);
                SelectorParameter.Value = defaultSelector;
            }
            #endregion

            #region Create analyzers
            qualityAnalyzer                = new BestAverageWorstQualityAnalyzer();
            layerQualityAnalyzer           = new BestAverageWorstQualityAnalyzer();
            ageAnalyzer                    = new OldestAverageYoungestAgeAnalyzer();
            layerAgeAnalyzer               = new OldestAverageYoungestAgeAnalyzer();
            ageDistributionAnalyzer        = new AgeDistributionAnalyzer();
            layerAgeDistributionAnalyzer   = new AgeDistributionAnalyzer();
            selectionPressureAnalyzer      = new ValueAnalyzer();
            layerSelectionPressureAnalyzer = new ValueAnalyzer();
            currentSuccessRatioAnalyzer    = new ValueAnalyzer();
            #endregion

            #region Create terminators
            generationsTerminator = new ComparisonTerminator <IntValue>("Generations", ComparisonType.Less, new IntValue(1000))
            {
                Name = "Generations"
            };
            evaluationsTerminator = new ComparisonTerminator <IntValue>("EvaluatedSolutions", ComparisonType.Less, new IntValue(int.MaxValue))
            {
                Name = "Evaluations"
            };
            qualityTerminator = new SingleObjectiveQualityTerminator()
            {
                Name = "Quality"
            };
            executionTimeTerminator = new ExecutionTimeTerminator(this, new TimeSpanValue(TimeSpan.FromMinutes(5)));
            #endregion

            #region Parameterize
            UpdateAnalyzers();
            ParameterizeAnalyzers();

            ParameterizeSelectors();

            UpdateTerminators();

            ParameterizeAgeLimits();
            #endregion

            Initialize();
        }
 private AlpsOffspringSelectionGeneticAlgorithm(AlpsOffspringSelectionGeneticAlgorithm original, Cloner cloner)
   : base(original, cloner) {
   qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
   layerQualityAnalyzer = cloner.Clone(original.layerQualityAnalyzer);
   ageAnalyzer = cloner.Clone(original.ageAnalyzer);
   layerAgeAnalyzer = cloner.Clone(original.layerAgeAnalyzer);
   ageDistributionAnalyzer = cloner.Clone(original.ageDistributionAnalyzer);
   layerAgeDistributionAnalyzer = cloner.Clone(original.layerAgeDistributionAnalyzer);
   selectionPressureAnalyzer = cloner.Clone(original.selectionPressureAnalyzer);
   layerSelectionPressureAnalyzer = cloner.Clone(original.layerSelectionPressureAnalyzer);
   currentSuccessRatioAnalyzer = cloner.Clone(original.currentSuccessRatioAnalyzer);
   generationsTerminator = cloner.Clone(original.generationsTerminator);
   evaluationsTerminator = cloner.Clone(original.evaluationsTerminator);
   qualityTerminator = cloner.Clone(original.qualityTerminator);
   executionTimeTerminator = cloner.Clone(original.executionTimeTerminator);
   Initialize();
 }
 private AgeDistributionAnalyzer(AgeDistributionAnalyzer original, Cloner cloner)
     : base(original, cloner)
 {
 }
 private AgeDistributionAnalyzer(AgeDistributionAnalyzer original, Cloner cloner)
   : base(original, cloner) { }