Exemplo n.º 1
0
        /// <summary>
        /// Encodes a coordinate on the sphere to the corresponding icosahedral face and
        /// containing 2D hex coordinates relative to that face center.
        /// </summary>
        /// <param name="g">The spherical coordinates to encode.</param>
        /// <param name="res">The desired H3 resolution for the encoding.</param>
        /// <param name="face">The icosahedral face containing the spherical coordinates.</param>
        /// <param name="v">The 2D hex coordinates of the cell containing the point.</param>
        /// <!-- Based off 3.1.1 -->
        public static void _geoToHex2d(GeoCoord g, int res, ref int face, ref Vec2d v)
        {
            Vec3d v3d = new Vec3d();

            Vec3d._geoToVec3d(g, ref v3d);

            // determine the icosahedron face
            face = 0;
            double sqd = Vec3d._pointSquareDist(faceCenterPoint[0], v3d);

            for (int f = 1; f < Constants.NUM_ICOSA_FACES; f++)
            {
                double sqdT = Vec3d._pointSquareDist(faceCenterPoint[f], v3d);
                if (sqdT < sqd)
                {
                    face = f;
                    sqd  = sqdT;
                }
            }

            // cos(r) = 1 - 2 * sin^2(r/2) = 1 - 2 * (sqd / 4) = 1 - sqd/2
            double r = Math.Acos(1 - sqd / 2);

            if (r < Constants.EPSILON)
            {
                v.x = 0.0;
                v.y = 0.0;
                return;
            }

            // now have face and r, now find CCW theta from CII i-axis
            double theta =
                GeoCoord._posAngleRads(faceAxesAzRadsCII[face, 0] -
                                       GeoCoord._posAngleRads(GeoCoord._geoAzimuthRads(faceCenterGeo[face], g)));

            // adjust theta for Class III (odd resolutions)
            if (H3Index.isResClassIII(res))
            {
                theta = GeoCoord._posAngleRads(theta - Constants.M_AP7_ROT_RADS);
            }

            // perform gnomonic scaling of r
            r = Math.Tan(r);

            // scale for current resolution length u
            r /= Constants.RES0_U_GNOMONIC;
            for (int i = 0; i < res; i++)
            {
                r *= M_SQRT7;
            }

            // we now have (r, theta) in hex2d with theta ccw from x-axes

            // convert to local x,y
            v.x = r * Math.Cos(theta);
            v.y = r * Math.Sin(theta);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Determines the center point in spherical coordinates of a cell given by 2D
        /// hex coordinates on a particular icosahedral face.
        /// </summary>
        /// <param name="v">The 2D hex coordinates of the cell.</param>
        /// <param name="face">The icosahedral face upon which the 2D hex coordinate system is centered</param>
        /// <param name="res">The H3 resolution of the cell</param>
        /// <param name="substrate">Indicates whether or not this grid is actually a substrate
        /// grid relative to the specified resolution.</param>
        /// <param name="g">The spherical coordinates of the cell center point.</param>
        /// <!-- Based off 3.1.1 -->
        public static void _hex2dToGeo(ref Vec2d v, int face, int res, int substrate, ref GeoCoord g)
        {
            // calculate (r, theta) in hex2d
            double r = Vec2d._v2dMag(v);

            if (r < Constants.EPSILON)
            {
                g = faceCenterGeo[face];
                return;
            }

            double theta = Math.Atan2(v.y, v.x);

            // scale for current resolution length u
            for (int i = 0; i < res; i++)
            {
                r /= M_SQRT7;
            }

            // scale accordingly if this is a substrate grid
            if (substrate > 0)
            {
                r /= 3.0;
                if (H3Index.isResClassIII(res))
                {
                    r /= M_SQRT7;
                }
            }

            r *= Constants.RES0_U_GNOMONIC;

            // perform inverse gnomonic scaling of r
            r = Math.Atan(r);

            // adjust theta for Class III
            // if a substrate grid, then it's already been adjusted for Class III
            if (substrate == 0 && H3Index.isResClassIII(res))
            {
                theta = GeoCoord._posAngleRads(theta + Constants.M_AP7_ROT_RADS);
            }

            // find theta as an azimuth
            theta = GeoCoord._posAngleRads(faceAxesAzRadsCII[face, 0] - theta);

            // now find the point at (r,theta) from the face center
            GeoCoord._geoAzDistanceRads(ref faceCenterGeo[face], theta, r, ref g);
        }
Exemplo n.º 3
0
        /// <summary>
        /// Produces an index for ijk+ coordinates anchored by an origin.
        ///
        /// The coordinate space used by this function may have deleted
        /// regions or warping due to pentagonal distortion.
        ///
        /// Failure may occur if the coordinates are too far away from the origin
        /// or if the index is on the other side of a pentagon.
        /// </summary>
        /// <param name="origin">An anchoring index for the ijk+ coordinate system.</param>
        /// <param name="ijk">IJK+ Coordinates to find the index of</param>
        /// <param name="out_h3">The index will be placed here on success</param>
        /// <returns>0 on success, or another value on failure</returns>
        /// <!-- Based off 3.2.0 -->
        internal static int localIjkToH3(H3Index origin, CoordIJK ijk, ref H3Index out_h3)
        {
            int res            = H3Index.H3_GET_RESOLUTION(origin);
            int originBaseCell = H3Index.H3_GET_BASE_CELL(origin);
            int originOnPent   = BaseCells._isBaseCellPentagon(originBaseCell)
                                   ? 1
                                   : 0;

            // This logic is very similar to faceIjkToH3
            // initialize the index
            out_h3 = H3Index.H3_INIT;
            H3Index.H3_SET_MODE(ref out_h3, Constants.H3_HEXAGON_MODE);
            H3Index.H3_SET_RESOLUTION(ref out_h3, res);
            Direction dir;

            // check for res 0/base cell
            if (res == 0)
            {
                if (ijk.i > 1 || ijk.j > 1 || ijk.k > 1)
                {
                    // out of range input
                    return(1);
                }

                dir = CoordIJK._unitIjkToDigit(ref ijk);
                int newBaseCell = BaseCells._getBaseCellNeighbor(originBaseCell, dir);
                if (newBaseCell == BaseCells.INVALID_BASE_CELL)
                {
                    // Moving in an invalid direction off a pentagon.
                    return(1);
                }

                H3Index.H3_SET_BASE_CELL(ref out_h3, newBaseCell);
                return(0);
            }

            // we need to find the correct base cell offset (if any) for this H3 index;
            // start with the passed in base cell and resolution res ijk coordinates
            // in that base cell's coordinate system
            CoordIJK ijkCopy = new CoordIJK(ijk.i, ijk.j, ijk.k);

            // build the H3Index from finest res up
            // adjust r for the fact that the res 0 base cell offsets the indexing
            // digits
            for (int r = res - 1; r >= 0; r--)
            {
                CoordIJK lastIJK = ijkCopy;
                CoordIJK lastCenter;
                if (H3Index.isResClassIII(r + 1))
                {
                    // rotate ccw
                    CoordIJK._upAp7(ref ijkCopy);
                    lastCenter = ijkCopy;
                    CoordIJK._downAp7(ref lastCenter);
                }
                else
                {
                    // rotate cw
                    CoordIJK._upAp7r(ref ijkCopy);
                    lastCenter = ijkCopy;
                    CoordIJK._downAp7r(ref lastCenter);
                }

                CoordIJK diff = new CoordIJK();
                CoordIJK._ijkSub(ref lastIJK, ref lastCenter, ref diff);
                CoordIJK._ijkNormalize(ref diff);

                H3Index.H3_SET_INDEX_DIGIT(ref out_h3, r + 1, (ulong)CoordIJK._unitIjkToDigit(ref diff));
            }

            // ijkCopy should now hold the IJK of the base cell in the
            // coordinate system of the current base cell

            if (ijkCopy.i > 1 || ijkCopy.j > 1 || ijkCopy.k > 1)
            {
                // out of range input
                return(2);
            }

            // lookup the correct base cell
            dir = CoordIJK._unitIjkToDigit(ref ijkCopy);
            int baseCell = BaseCells._getBaseCellNeighbor(originBaseCell, dir);
            // If baseCell is invalid, it must be because the origin base cell is a
            // pentagon, and because pentagon base cells do not border each other,
            // baseCell must not be a pentagon.
            int indexOnPent =
                (baseCell == BaseCells.INVALID_BASE_CELL
                     ? 0
                     : BaseCells._isBaseCellPentagon(baseCell)
                         ? 1
                         : 0);

            if (dir != (int)Direction.CENTER_DIGIT)
            {
                // If the index is in a warped direction, we need to unwarp the base
                // cell direction. There may be further need to rotate the index digits.
                int pentagonRotations = 0;
                if (originOnPent != 0)
                {
                    Direction originLeadingDigit = H3Index._h3LeadingNonZeroDigit(origin);
                    pentagonRotations =
                        PENTAGON_ROTATIONS_REVERSE[(int)originLeadingDigit, (int)dir];
                    for (int i = 0; i < pentagonRotations; i++)
                    {
                        dir = CoordIJK._rotate60ccw(dir);
                    }

                    // The pentagon rotations are being chosen so that dir is not the
                    // deleted direction. If it still happens, it means we're moving
                    // into a deleted subsequence, so there is no index here.
                    if (dir == Direction.K_AXES_DIGIT)
                    {
                        return(3);
                    }

                    baseCell = BaseCells._getBaseCellNeighbor(originBaseCell, dir);

                    // indexOnPent does not need to be checked again since no pentagon
                    // base cells border each other.
                    if (baseCell == BaseCells.INVALID_BASE_CELL)
                    {
                        throw new Exception("assert(baseCell != BaseCells.INVALID_BASE_CELL);");
                    }

                    if (BaseCells._isBaseCellPolarPentagon(baseCell))
                    {
                        throw new Exception("assert(!BaseCells._isBaseCellPentagon(baseCell));");
                    }
                }

                // Now we can determine the relation between the origin and target base
                // cell.
                int baseCellRotations =
                    BaseCells.baseCellNeighbor60CCWRots[originBaseCell, (int)dir];
                if (baseCellRotations < 0)
                {
                    throw new Exception("assert(baseCellRotations >= 0);");
                }

                // Adjust for pentagon warping within the base cell. The base cell
                // should be in the right location, so now we need to rotate the index
                // back. We might not need to check for errors since we would just be
                // double mapping.
                if (indexOnPent != 0)
                {
                    Direction revDir =
                        BaseCells._getBaseCellDirection(baseCell, originBaseCell);

                    if (revDir == Direction.INVALID_DIGIT)
                    {
                        throw new Exception("assert(revDir != Direction.INVALID_DIGIT);");
                    }


                    // Adjust for the different coordinate space in the two base cells.
                    // This is done first because we need to do the pentagon rotations
                    // based on the leading digit in the pentagon's coordinate system.
                    for (int i = 0; i < baseCellRotations; i++)
                    {
                        out_h3 = H3Index._h3Rotate60ccw(ref out_h3);
                    }

                    Direction indexLeadingDigit = H3Index._h3LeadingNonZeroDigit(out_h3);
                    if (BaseCells._isBaseCellPolarPentagon(baseCell))
                    {
                        pentagonRotations =
                            PENTAGON_ROTATIONS_REVERSE_POLAR[(int)revDir, (int)indexLeadingDigit];
                    }
                    else
                    {
                        pentagonRotations =
                            PENTAGON_ROTATIONS_REVERSE_NONPOLAR[(int)revDir, (int)indexLeadingDigit];
                    }

                    if (pentagonRotations < 0)
                    {
                        throw new Exception("assert(pentagonRotations >= 0);");
                    }


                    for (int i = 0; i < pentagonRotations; i++)
                    {
                        out_h3 = H3Index._h3RotatePent60ccw(ref out_h3);
                    }
                }
                else
                {
                    if (pentagonRotations < 0)
                    {
                        throw new Exception("assert(pentagonRotations >= 0);");
                    }


                    for (int i = 0; i < pentagonRotations; i++)
                    {
                        out_h3 = H3Index._h3Rotate60ccw(ref out_h3);
                    }

                    // Adjust for the different coordinate space in the two base cells.
                    for (int i = 0; i < baseCellRotations; i++)
                    {
                        out_h3 = H3Index._h3Rotate60ccw(ref out_h3);
                    }
                }
            }
            else if (originOnPent != 0 && indexOnPent != 0)
            {
                int originLeadingDigit = (int)H3Index._h3LeadingNonZeroDigit(origin);
                int indexLeadingDigit  = (int)H3Index._h3LeadingNonZeroDigit(out_h3);

                int withinPentagonRotations =
                    PENTAGON_ROTATIONS_REVERSE[originLeadingDigit, indexLeadingDigit];
                if (withinPentagonRotations < 0)
                {
                    throw new Exception("assert(withinPentagonRotations >= 0);");
                }

                for (int i = 0; i < withinPentagonRotations; i++)
                {
                    out_h3 = H3Index._h3Rotate60ccw(ref out_h3);
                }
            }

            if (indexOnPent != 0)
            {
                // TODO: There are cases in h3ToLocalIjk which are failed but not
                // accounted for here - instead just fail if the recovered index is
                // invalid.
                if (H3Index._h3LeadingNonZeroDigit(out_h3) == Direction.K_AXES_DIGIT)
                {
                    return(4);
                }
            }

            H3Index.H3_SET_BASE_CELL(ref out_h3, baseCell);

            return(0);
        }
Exemplo n.º 4
0
        /// <summary>
        /// Produces ijk+ coordinates for an index anchored by an origin.
        ///
        /// The coordinate space used by this function may have deleted
        /// regions or warping due to pentagonal distortion.
        ///
        /// Coordinates are only comparable if they come from the same
        /// origin index.
        ///
        /// Failure may occur if the index is too far away from the origin
        /// or if the index is on the other side of a pentagon.
        /// </summary>
        /// <param name="origin">An anchoring index for the ijk+ coordinate system</param>
        /// <param name="h3">Index to find the coordinates of</param>
        /// <param name="out_coord">ijk+ coordinates of the index will be placed here on success</param>
        /// <returns>0 on success, or another value on failure.</returns>
        /// <!-- Based off 3.2.0 -->
        static int h3ToLocalIjk(H3Index origin, H3Index h3, ref CoordIJK out_coord)
        {
            int res = H3Index.H3_GET_RESOLUTION(origin);

            if (res != H3Index.H3_GET_RESOLUTION(h3))
            {
                return(1);
            }

            int originBaseCell = H3Index.H3_GET_BASE_CELL(origin);
            int baseCell       = H3Index.H3_GET_BASE_CELL(h3);

            // Direction from origin base cell to index base cell
            Direction dir    = 0;
            Direction revDir = 0;

            if (originBaseCell != baseCell)
            {
                dir = BaseCells._getBaseCellDirection(originBaseCell, baseCell);
                if (dir == Direction.INVALID_DIGIT)
                {
                    // Base cells are not neighbors, can't unfold.
                    return(2);
                }

                revDir = BaseCells._getBaseCellDirection(baseCell, originBaseCell);
                if (revDir == Direction.INVALID_DIGIT)
                {
                    throw new Exception("assert(revDir != INVALID_DIGIT)");
                }
            }

            int originOnPent = (BaseCells._isBaseCellPentagon(originBaseCell)
                                    ? 1
                                    : 0);
            int indexOnPent = (BaseCells._isBaseCellPentagon(baseCell)
                                   ? 1
                                   : 0);

            FaceIJK indexFijk = new FaceIJK();

            if (dir != Direction.CENTER_DIGIT)
            {
                // Rotate index into the orientation of the origin base cell.
                // cw because we are undoing the rotation into that base cell.
                int baseCellRotations = BaseCells.baseCellNeighbor60CCWRots[originBaseCell, (int)dir];
                if (indexOnPent != 0)
                {
                    for (int i = 0; i < baseCellRotations; i++)
                    {
                        h3 = H3Index._h3RotatePent60cw(h3);

                        revDir = CoordIJK._rotate60cw(revDir);
                        if (revDir == Direction.K_AXES_DIGIT)
                        {
                            revDir = CoordIJK._rotate60cw(revDir);
                        }
                    }
                }
                else
                {
                    for (int i = 0; i < baseCellRotations; i++)
                    {
                        h3 = H3Index._h3Rotate60cw(ref h3);

                        revDir = CoordIJK._rotate60cw(revDir);
                    }
                }
            }

            // Face is unused. This produces coordinates in base cell coordinate space.
            H3Index._h3ToFaceIjkWithInitializedFijk(h3, ref indexFijk);

            if (dir != Direction.CENTER_DIGIT)
            {
                if (baseCell == originBaseCell)
                {
                    throw new Exception("assert(baseCell != originBaseCell);");
                }

                if ((originOnPent != 0) && (indexOnPent != 0))
                {
                    throw new Exception("assert(!(originOnPent && indexOnPent));");
                }

                int pentagonRotations  = 0;
                int directionRotations = 0;

                if (originOnPent != 0)
                {
                    int originLeadingDigit = (int)H3Index._h3LeadingNonZeroDigit(origin);

                    if ((H3Index.isResClassIII(res) &&
                         FAILED_DIRECTIONS_III[originLeadingDigit, (int)dir]) ||
                        (!H3Index.isResClassIII(res) &&
                         FAILED_DIRECTIONS_II[originLeadingDigit, (int)dir]))
                    {
                        // TODO this part of the pentagon might not be unfolded
                        // correctly.
                        return(3);
                    }

                    directionRotations = PENTAGON_ROTATIONS[originLeadingDigit, (int)dir];
                    pentagonRotations  = directionRotations;
                }
                else if (indexOnPent != 0)
                {
                    int indexLeadingDigit = (int)H3Index._h3LeadingNonZeroDigit(h3);

                    if ((H3Index.isResClassIII(res) &&
                         FAILED_DIRECTIONS_III[indexLeadingDigit, (int)revDir]) ||
                        (!H3Index.isResClassIII(res) &&
                         FAILED_DIRECTIONS_II[indexLeadingDigit, (int)revDir]))
                    {
                        // TODO this part of the pentagon might not be unfolded
                        // correctly.
                        return(4);
                    }

                    pentagonRotations = PENTAGON_ROTATIONS[(int)revDir, indexLeadingDigit];
                }

                if (pentagonRotations < 0)
                {
                    throw new Exception("assert(pentagonRotations >= 0);");
                }

                if (directionRotations < 0)
                {
                    throw new Exception("assert(directionRotations >= 0);");
                }



                for (int i = 0; i < pentagonRotations; i++)
                {
                    CoordIJK._ijkRotate60cw(ref indexFijk.coord);
                }

                CoordIJK offset = new CoordIJK();
                CoordIJK._neighbor(ref offset, dir);
                // Scale offset based on resolution
                for (int r = res - 1; r >= 0; r--)
                {
                    if (H3Index.isResClassIII(r + 1))
                    {
                        // rotate ccw
                        CoordIJK._downAp7(ref offset);
                    }
                    else
                    {
                        // rotate cw
                        CoordIJK._downAp7r(ref offset);
                    }
                }

                for (int i = 0; i < directionRotations; i++)
                {
                    CoordIJK._ijkRotate60cw(ref offset);
                }

                // Perform necessary translation
                CoordIJK._ijkAdd(indexFijk.coord, offset, ref indexFijk.coord);
                CoordIJK._ijkNormalize(ref indexFijk.coord);
            }
            else if (originOnPent != 0 && indexOnPent != 0)
            {
                // If the origin and index are on pentagon, and we checked that the base
                // cells are the same or neighboring, then they must be the same base
                // cell.
                if (baseCell != originBaseCell)
                {
                    throw new Exception("assert(baseCell == originBaseCell);");
                }


                int originLeadingDigit = (int)H3Index._h3LeadingNonZeroDigit(origin);
                int indexLeadingDigit  = (int)H3Index._h3LeadingNonZeroDigit(h3);

                if (FAILED_DIRECTIONS_III[originLeadingDigit, indexLeadingDigit] ||
                    FAILED_DIRECTIONS_II[originLeadingDigit, indexLeadingDigit])
                {
                    // TODO this part of the pentagon might not be unfolded
                    // correctly.
                    return(5);
                }

                int withinPentagonRotations =
                    PENTAGON_ROTATIONS[originLeadingDigit, indexLeadingDigit];

                for (int i = 0; i < withinPentagonRotations; i++)
                {
                    CoordIJK._ijkRotate60cw(ref indexFijk.coord);
                }
            }

            out_coord = indexFijk.coord;
            return(0);
        }
Exemplo n.º 5
0
        /// <summary>
        /// Generates the cell boundary in spherical coordinates for a cell given by a
        /// FaceIJK address at a specified resolution.
        /// </summary>
        /// <param name="h">The FaceIJK address of the cell.</param>
        /// <param name="res">The H3 resolution of the cell.</param>
        /// <param name="isPentagon">Whether or not the cell is a pentagon.</param>
        /// <param name="g">The spherical coordinates of the cell boundary.</param>
        /// <!-- Based off 3.1.1 -->
        public static void _faceIjkToGeoBoundary(ref FaceIJK h, int res, int isPentagon, ref GeoBoundary g)
        {
            if (isPentagon > 0)
            {
                _faceIjkPentToGeoBoundary(ref h, res, ref g);
                return;
            }

            // the vertexes of an origin-centered cell in a Class II resolution on a
            // substrate grid with aperture sequence 33r. The aperture 3 gets us the
            // vertices, and the 3r gets us back to Class II.
            // vertices listed ccw from the i-axes
            CoordIJK[] vertsCII =
            {
                new CoordIJK {
                    i = 2, j = 1, k = 0
                },                                  // 0
                new CoordIJK {
                    i = 1, j = 2, k = 0
                },                                  // 1
                new CoordIJK {
                    i = 0, j = 2, k = 1
                },                                  // 2
                new CoordIJK {
                    i = 0, j = 1, k = 2
                },                                  // 3
                new CoordIJK {
                    i = 1, j = 0, k = 2
                },                                  // 4
                new CoordIJK {
                    i = 2, j = 0, k = 1
                }                                  // 5
            };

            // the vertexes of an origin-centered cell in a Class III resolution on a
            // substrate grid with aperture sequence 33r7r. The aperture 3 gets us the
            // vertices, and the 3r7r gets us to Class II.
            // vertices listed ccw from the i-axes
            CoordIJK[] vertsCIII =
            {
                new CoordIJK {
                    i = 5, j = 4, k = 0
                },                                  // 0
                new CoordIJK {
                    i = 1, j = 5, k = 0
                },                                  // 1
                new CoordIJK {
                    i = 0, j = 5, k = 4
                },                                  // 2
                new CoordIJK {
                    i = 0, j = 1, k = 5
                },                                  // 3
                new CoordIJK {
                    i = 4, j = 0, k = 5
                },                                  // 4
                new CoordIJK {
                    i = 5, j = 0, k = 1
                }                                  // 5
            };

            // get the correct set of substrate vertices for this resolution
            CoordIJK[] verts;
            if (H3Index.isResClassIII(res))
            {
                verts = vertsCIII;
            }
            else
            {
                verts = vertsCII;
            }

            // adjust the center point to be in an aperture 33r substrate grid
            // these should be composed for speed
            FaceIJK centerIJK = new FaceIJK(h.face, new CoordIJK(h.coord.i, h.coord.j, h.coord.k));

            CoordIJK._downAp3(ref centerIJK.coord);
            CoordIJK._downAp3r(ref centerIJK.coord);

            // if res is Class III we need to add a cw aperture 7 to get to
            // icosahedral Class II
            int adjRes = res;

            if (H3Index.isResClassIII(res))
            {
                CoordIJK._downAp7r(ref centerIJK.coord);
                adjRes++;
            }

            // The center point is now in the same substrate grid as the origin
            // cell vertices. Add the center point substate coordinates
            // to each vertex to translate the vertices to that cell.
            FaceIJK[] fijkVerts = new FaceIJK[Constants.NUM_HEX_VERTS];
            for (int v = 0; v < Constants.NUM_HEX_VERTS; v++)
            {
                fijkVerts[v]      = new FaceIJK();
                fijkVerts[v].face = centerIJK.face;
                CoordIJK._ijkAdd(centerIJK.coord, verts[v], ref fijkVerts[v].coord);
                CoordIJK._ijkNormalize(ref fijkVerts[v].coord);
            }

            // convert each vertex to lat/lon
            // adjust the face of each vertex as appropriate and introduce
            // edge-crossing vertices as needed
            g.numVerts = 0;
            int lastFace    = -1;
            int lastOverage = 0; // 0: none; 1: edge; 2: overage

            for (int vert = 0; vert < Constants.NUM_HEX_VERTS + 1; vert++)
            {
                int v = vert % Constants.NUM_HEX_VERTS;

                FaceIJK fijk = new FaceIJK
                               (
                    fijkVerts[v].face,
                    new CoordIJK(fijkVerts[v].coord.i, fijkVerts[v].coord.j, fijkVerts[v].coord.k)
                               );

                int pentLeading4 = 0;
                int overage      = _adjustOverageClassII(ref fijk, adjRes, pentLeading4, 1);

                /*
                 * Check for edge-crossing. Each face of the underlying icosahedron is a
                 * different projection plane. So if an edge of the hexagon crosses an
                 * icosahedron edge, an additional vertex must be introduced at that
                 * intersection point. Then each half of the cell edge can be projected
                 * to geographic coordinates using the appropriate icosahedron face
                 * projection. Note that Class II cell edges have vertices on the face
                 * edge, with no edge line intersections.
                 */
                if (H3Index.isResClassIII(res) && vert > 0 && fijk.face != lastFace &&
                    lastOverage != 1)
                {
                    // find hex2d of the two vertexes on original face
                    int   lastV   = (v + 5) % Constants.NUM_HEX_VERTS;
                    Vec2d orig2d0 = new Vec2d();
                    CoordIJK._ijkToHex2d(fijkVerts[lastV].coord, ref orig2d0);

                    Vec2d orig2d1 = new Vec2d();
                    CoordIJK._ijkToHex2d(fijkVerts[v].coord, ref orig2d1);

                    // find the appropriate icosa face edge vertexes
                    int   maxDim = maxDimByCIIres[adjRes];
                    Vec2d v0     = new Vec2d(3.0 * maxDim, 0.0);
                    Vec2d v1     = new Vec2d(-1.5 * maxDim, 3.0 * Constants.M_SQRT3_2 * maxDim);
                    Vec2d v2     = new Vec2d(-1.5 * maxDim, -3.0 * Constants.M_SQRT3_2 * maxDim);

                    int   face2 = lastFace == centerIJK.face ? fijk.face : lastFace;
                    Vec2d edge0 = new Vec2d();
                    Vec2d edge1 = new Vec2d();
                    switch (adjacentFaceDir[centerIJK.face, face2])
                    {
                    case IJ:
                        edge0 = v0;
                        edge1 = v1;
                        break;

                    case JK:
                        edge0 = v1;
                        edge1 = v2;
                        break;

                    case KI:
                    default:
                        if (adjacentFaceDir[centerIJK.face, face2] != KI)
                        {
                            throw new Exception("Default failure in _faceIjkToGeoBoundary");
                        }

                        edge0 = v2;
                        edge1 = v0;
                        break;
                    }

                    // find the intersection and add the lat/lon point to the result
                    Vec2d inter = new Vec2d();
                    Vec2d._v2dIntersect(orig2d0, orig2d1, edge0, edge1, ref inter);

                    /*
                     * If a point of intersection occurs at a hexagon vertex, then each
                     * adjacent hexagon edge will lie completely on a single icosahedron
                     * face, and no additional vertex is required.
                     */
                    bool isIntersectionAtVertex =
                        Vec2d._v2dEquals(orig2d0, inter) || Vec2d._v2dEquals(orig2d1, inter);
                    if (!isIntersectionAtVertex)
                    {
                        var temp_verts = g.verts[g.numVerts];
                        _hex2dToGeo(ref inter, centerIJK.face, adjRes, 1, ref temp_verts);
                        g.verts[g.numVerts] = temp_verts;
                        g.numVerts++;
                        Debug.WriteLine(string.Format("!IsIntersection {0}", g.numVerts));
                    }
                }

                // convert vertex to lat/lon and add to the result
                // vert == NUM_HEX_VERTS is only used to test for possible intersection
                // on last edge
                if (vert < Constants.NUM_HEX_VERTS)
                {
                    Vec2d vec = new Vec2d();
                    CoordIJK._ijkToHex2d(fijk.coord, ref vec);
                    var temp_verts = g.verts[g.numVerts];
                    _hex2dToGeo(ref vec, fijk.face, adjRes, 1, ref temp_verts);
                    g.verts[g.numVerts] = temp_verts;
                    g.numVerts++;
                }

                lastFace    = fijk.face;
                lastOverage = overage;
            }
        }
Exemplo n.º 6
0
        /// <summary>
        /// Generates the cell boundary in spherical coordinates for a pentagonal cell
        /// given by a FaceIJK address at a specified resolution.
        /// </summary>
        /// <param name="h">The FaceIJK address of the pentagonal cell.</param>
        /// <param name="res">The H3 resolution of the cell.</param>
        /// <param name="g">The spherical coordinates of the cell boundary.</param>
        /// <!-- Based off 3.1.1 -->
        public static void _faceIjkPentToGeoBoundary(ref FaceIJK h, int res, ref GeoBoundary g)
        {
            // the vertexes of an origin-centered pentagon in a Class II resolution on a
            // substrate grid with aperture sequence 33r. The aperture 3 gets us the
            // vertices, and the 3r gets us back to Class II.
            // vertices listed ccw from the i-axes
            CoordIJK[] vertsCII =
            {
                new CoordIJK(2, 1, 0), // 0
                new CoordIJK(1, 2, 0), // 1
                new CoordIJK(0, 2, 1), // 2
                new CoordIJK(0, 1, 2), // 3
                new CoordIJK(1, 0, 2)  // 4
            };

            // the vertexes of an origin-centered pentagon in a Class III resolution on
            // a substrate grid with aperture sequence 33r7r. The aperture 3 gets us the
            // vertices, and the 3r7r gets us to Class II. vertices listed ccw from the
            // i-axes
            CoordIJK[] vertsCIII =
            {
                new CoordIJK(5, 4, 0), // 0
                new CoordIJK(1, 5, 0), // 1
                new CoordIJK(0, 5, 4), // 2
                new CoordIJK(0, 1, 5), // 3
                new CoordIJK(4, 0, 5)  // 4
            };

            // get the correct set of substrate vertices for this resolution
            List <CoordIJK> verts = new List <CoordIJK>();

            verts = H3Index.isResClassIII(res)
                ? vertsCIII.ToList()
                : vertsCII.ToList();

            // adjust the center point to be in an aperture 33r substrate grid
            // these should be composed for speed
            FaceIJK centerIJK = new FaceIJK();

            centerIJK.face  = h.face;
            centerIJK.coord = new CoordIJK(h.coord.i, h.coord.j, h.coord.k);
            CoordIJK._downAp3(ref centerIJK.coord);
            CoordIJK._downAp3r(ref centerIJK.coord);

            // if res is Class III we need to add a cw aperture 7 to get to
            // icosahedral Class II
            int adjRes = res;

            if (H3Index.isResClassIII(res))
            {
                CoordIJK._downAp7r(ref centerIJK.coord);
                adjRes++;
            }

            // The center point is now in the same substrate grid as the origin
            // cell vertices. Add the center point substate coordinates
            // to each vertex to translate the vertices to that cell.
            FaceIJK[] fijkVerts = new FaceIJK[Constants.NUM_PENT_VERTS];
            for (int v = 0; v < Constants.NUM_PENT_VERTS; v++)
            {
                fijkVerts[v]      = new FaceIJK();
                fijkVerts[v].face = centerIJK.face;
                CoordIJK._ijkAdd(centerIJK.coord, verts[v], ref fijkVerts[v].coord);
                CoordIJK._ijkNormalize(ref fijkVerts[v].coord);
            }

            // convert each vertex to lat/lon
            // adjust the face of each vertex as appropriate and introduce
            // edge-crossing vertices as needed
            g.numVerts = 0;
            for (int i = 0; i < g.verts.Count; i++)
            {
                g.verts[i] = new GeoCoord();
            }
            FaceIJK lastFijk = new FaceIJK();

            for (int vert = 0; vert < Constants.NUM_PENT_VERTS + 1; vert++)
            {
                int v = vert % Constants.NUM_PENT_VERTS;

                FaceIJK fijk = fijkVerts[v];

                int pentLeading4 = 0;
                int overage      = _adjustOverageClassII(ref fijk, adjRes, pentLeading4, 1);
                if (overage == 2) // in a different triangle
                {
                    while (true)
                    {
                        overage = _adjustOverageClassII(ref fijk, adjRes, pentLeading4, 1);
                        if (overage != 2) // not in a different triangle
                        {
                            break;
                        }
                    }
                }

                // all Class III pentagon edges cross icosa edges
                // note that Class II pentagons have vertices on the edge,
                // not edge intersections
                if (H3Index.isResClassIII(res) && vert > 0)
                {
                    // find hex2d of the two vertexes on the last face

                    FaceIJK tmpFijk = new FaceIJK(fijk.face, new CoordIJK(fijk.coord.i, fijk.coord.j, fijk.coord.k));

                    Vec2d orig2d0 = new Vec2d();
                    CoordIJK._ijkToHex2d(lastFijk.coord, ref orig2d0);

                    int currentToLastDir = adjacentFaceDir[tmpFijk.face, lastFijk.face];

                    FaceOrientIJK fijkOrient =
                        new FaceOrientIJK(
                            faceNeighbors[tmpFijk.face, currentToLastDir].face,
                            faceNeighbors[tmpFijk.face, currentToLastDir].translate.i,
                            faceNeighbors[tmpFijk.face, currentToLastDir].translate.j,
                            faceNeighbors[tmpFijk.face, currentToLastDir].translate.k,
                            faceNeighbors[tmpFijk.face, currentToLastDir].ccwRot60
                            );

//                        faceNeighbors[tmpFijk.face,currentToLastDir];

                    tmpFijk.face = fijkOrient.face;
                    //CoordIJK ijk = tmpFijk.coord;
                    CoordIJK ijk = new CoordIJK(tmpFijk.coord.i, tmpFijk.coord.j, tmpFijk.coord.k);

                    // rotate and translate for adjacent face
                    for (int i = 0; i < fijkOrient.ccwRot60; i++)
                    {
                        CoordIJK._ijkRotate60ccw(ref ijk);
                    }

                    CoordIJK transVec = fijkOrient.translate;
                    CoordIJK._ijkScale(ref transVec, unitScaleByCIIres[adjRes] * 3);
                    CoordIJK._ijkAdd(ijk, transVec, ref ijk);
                    CoordIJK._ijkNormalize(ref ijk);

                    Vec2d orig2d1 = new Vec2d();
                    CoordIJK._ijkToHex2d(ijk, ref orig2d1);

                    // find the appropriate icosa face edge vertexes
                    int   maxDim = maxDimByCIIres[adjRes];
                    Vec2d v0     = new Vec2d(3.0 * maxDim, 0.0);
                    Vec2d v1     = new Vec2d(-1.5 * maxDim, 3.0 * Constants.M_SQRT3_2 * maxDim);
                    Vec2d v2     = new Vec2d(-1.5 * maxDim, -3.0 * Constants.M_SQRT3_2 * maxDim);

                    Vec2d edge0 = new Vec2d();
                    Vec2d edge1 = new Vec2d();
                    switch (adjacentFaceDir[tmpFijk.face, fijk.face])
                    {
                    case IJ:
                        edge0 = v0;
                        edge1 = v1;
                        break;

                    case JK:
                        edge0 = v1;
                        edge1 = v2;
                        break;

                    case KI:
                    default:
                        if (adjacentFaceDir[tmpFijk.face, fijk.face] != KI)
                        {
                            throw new Exception("assert(adjacentFaceDir[tmpFijk.face][fijk.face] == KI);");
                        }
                        edge0 = v2;
                        edge1 = v0;
                        break;
                    }

                    // find the intersection and add the lat/lon point to the result
                    Vec2d inter = new Vec2d();
                    Vec2d._v2dIntersect(orig2d0, orig2d1, edge0, edge1, ref inter);
                    var gnv = g.verts[g.numVerts];
                    _hex2dToGeo(ref inter, tmpFijk.face, adjRes, 1, ref gnv);
                    g.verts[g.numVerts] = gnv;
                    g.numVerts++;
                }

                // convert vertex to lat/lon and add to the result
                // vert == NUM_PENT_VERTS is only used to test for possible intersection
                // on last edge
                if (vert < Constants.NUM_PENT_VERTS)
                {
                    Vec2d vec = new Vec2d();
                    CoordIJK._ijkToHex2d(fijk.coord, ref vec);
                    var gnv = g.verts[g.numVerts];
                    _hex2dToGeo(ref vec, fijk.face, adjRes, 1, ref gnv);
                    g.verts[g.numVerts] = gnv;
                    g.numVerts++;
                }
                lastFijk = fijk;
            }
        }
Exemplo n.º 7
0
        /// <summary>
        /// Returns the hexagon index neighboring the origin, in the direction dir.
        ///
        /// Implementation note: The only reachable case where this returns 0 is if the
        /// origin is a pentagon and the translation is in the k direction. Thus,
        /// 0 can only be returned if origin is a pentagon.
        /// </summary>
        /// <param name="origin">Origin index</param>
        /// <param name="dir">Direction to move in</param>
        /// <param name="rotations">
        /// Number of ccw rotations to perform to reorient the translation vector.
        /// Will be modified to the new number of rotations to perform (such as
        /// when crossing a face edge.)
        /// </param>
        /// <returns>H3Index of the specified neighbor or 0 if deleted k-subsequence distortion is encountered.</returns>
        /// <!-- Based off 3.2.0 -->
        internal static ulong h3NeighborRotations(H3Index origin, Direction dir, ref int rotations)
        {
            H3Index out_hex = origin;

            for (int i = 0; i < rotations; i++)
            {
                dir = CoordIJK._rotate60ccw(dir);
            }

            int       newRotations    = 0;
            int       oldBaseCell     = H3Index.H3_GET_BASE_CELL(out_hex);
            Direction oldLeadingDigit = H3Index._h3LeadingNonZeroDigit(out_hex);

            // Adjust the indexing digits and, if needed, the base cell.
            int r = H3Index.H3_GET_RESOLUTION(out_hex) - 1;

            while (true)
            {
                if (r == -1)
                {
                    H3Index.H3_SET_BASE_CELL(ref out_hex, BaseCells.baseCellNeighbors[oldBaseCell, (int)dir]);
                    newRotations = BaseCells.baseCellNeighbor60CCWRots[oldBaseCell, (int)dir];

                    if (H3Index.H3_GET_BASE_CELL(out_hex) == BaseCells.INVALID_BASE_CELL)
                    {
                        // Adjust for the deleted k vertex at the base cell level.
                        // This edge actually borders a different neighbor.
                        H3Index.H3_SET_BASE_CELL(ref out_hex,
                                                 BaseCells.baseCellNeighbors[oldBaseCell, (int)Direction.IK_AXES_DIGIT]);
                        newRotations =
                            BaseCells.baseCellNeighbor60CCWRots[oldBaseCell, (int)Direction.IK_AXES_DIGIT];

                        // perform the adjustment for the k-subsequence we're skipping
                        // over.
                        out_hex = H3Index._h3Rotate60ccw(ref out_hex);
                        rotations++;
                    }

                    break;
                }

                Direction oldDigit = H3Index.H3_GET_INDEX_DIGIT(out_hex, r + 1);
                Direction nextDir;
                if (H3Index.isResClassIII(r + 1))
                {
                    H3Index.H3_SET_INDEX_DIGIT(ref out_hex, r + 1, (ulong)NEW_DIGIT_II[(int)oldDigit, (int)dir]);
                    nextDir = NEW_ADJUSTMENT_II[(int)oldDigit, (int)dir];
                }
                else
                {
                    H3Index.H3_SET_INDEX_DIGIT(ref out_hex, r + 1,
                                               (ulong)NEW_DIGIT_III[(int)oldDigit, (int)dir]);
                    nextDir = NEW_ADJUSTMENT_III[(int)oldDigit, (int)dir];
                }

                if (nextDir != Direction.CENTER_DIGIT)
                {
                    dir = nextDir;
                    r--;
                }
                else
                {
                    // No more adjustment to perform
                    break;
                }
            }

            int newBaseCell = H3Index.H3_GET_BASE_CELL(out_hex);

            if (BaseCells._isBaseCellPentagon(newBaseCell))
            {
                int alreadyAdjustedKSubsequence = 0;

                // force rotation out of missing k-axes sub-sequence
                if (H3Index._h3LeadingNonZeroDigit(out_hex) == Direction.K_AXES_DIGIT)
                {
                    if (oldBaseCell != newBaseCell)
                    {
                        // in this case, we traversed into the deleted
                        // k subsequence of a pentagon base cell.
                        // We need to rotate out of that case depending
                        // on how we got here.
                        // check for a cw/ccw offset face; default is ccw
                        if (BaseCells._baseCellIsCwOffset(
                                newBaseCell, BaseCells.baseCellData[oldBaseCell].homeFijk.face))
                        {
                            out_hex = H3Index._h3Rotate60cw(ref out_hex);
                        }
                        else
                        {
                            out_hex = H3Index._h3Rotate60ccw(ref out_hex); // LCOV_EXCL_LINE
                        }

                        // See cwOffsetPent in testKRing.c for why this is
                        // unreachable.

                        alreadyAdjustedKSubsequence = 1;
                    }
                    else
                    {
                        // In this case, we traversed into the deleted
                        // k subsequence from within the same pentagon
                        // base cell.
                        if (oldLeadingDigit == Direction.CENTER_DIGIT)
                        {
                            // Undefined: the k direction is deleted from here
                            return(H3Index.H3_INVALID_INDEX);
                        }

                        switch (oldLeadingDigit)
                        {
                        case Direction.JK_AXES_DIGIT:
                            // Rotate out of the deleted k subsequence
                            // We also need an additional change to the direction we're
                            // moving in
                            out_hex = H3Index._h3Rotate60ccw(ref out_hex);
                            rotations++;
                            break;

                        case Direction.IK_AXES_DIGIT:
                            // Rotate out of the deleted k subsequence
                            // We also need an additional change to the direction we're
                            // moving in
                            out_hex    = H3Index._h3Rotate60cw(ref out_hex);
                            rotations += 5;
                            break;

                        default:
                            // Should never occur
                            return(H3Index.H3_INVALID_INDEX);    // LCOV_EXCL_LINE
                        }
                    }
                }

                for (int i = 0; i < newRotations; i++)
                {
                    out_hex = H3Index._h3RotatePent60ccw(ref out_hex);
                }

                // Account for differing orientation of the base cells (this edge
                // might not follow properties of some other edges.)
                if (oldBaseCell != newBaseCell)
                {
                    if (BaseCells._isBaseCellPolarPentagon(newBaseCell))
                    {
                        // 'polar' base cells behave differently because they have all
                        // i neighbors.
                        if (oldBaseCell != 118 && oldBaseCell != 8 &&
                            H3Index._h3LeadingNonZeroDigit(out_hex) != Direction.JK_AXES_DIGIT)
                        {
                            rotations++;
                        }
                    }
                    else if (H3Index._h3LeadingNonZeroDigit(out_hex) == Direction.IK_AXES_DIGIT &&
                             alreadyAdjustedKSubsequence == 0)
                    {
                        // account for distortion introduced to the 5 neighbor by the
                        // deleted k subsequence.
                        rotations++;
                    }
                }
            }
            else
            {
                for (int i = 0; i < newRotations; i++)
                {
                    out_hex = H3Index._h3Rotate60ccw(ref out_hex);
                }
            }

            rotations = (rotations + newRotations) % 6;
            return(out_hex);
        }