Exemplo n.º 1
0
        public static DMatrixRBlock createRandom(int numRows, int numCols,
                                                 double min, double max, Random rand)
        {
            DMatrixRBlock ret = new DMatrixRBlock(numRows, numCols);

            Java.Util.Random rd = new Java.Util.Random();
            RandomMatrices_DDRM.fillUniform(ret, min, max, rd);

            return(ret);
        }
Exemplo n.º 2
0
        /**
         * Creates a newJava.Util.Random symmetric matrix that will have the specified real eigenvalues.
         *
         * @param num Dimension of the resulting matrix.
         * @param randJava.Util.Random number generator.
         * @param eigenvalues Set of real eigenvalues that the matrix will have.
         * @return AJava.Util.Random matrix with the specified eigenvalues.
         */
        public static DMatrixRMaj symmetricWithEigenvalues(int num, Java.Util.Random rand, double[] eigenvalues)
        {
            DMatrixRMaj V = RandomMatrices_DDRM.orthogonal(num, num, rand);
            DMatrixRMaj D = CommonOps_DDRM.diag(eigenvalues);

            DMatrixRMaj temp = new DMatrixRMaj(num, num);

            CommonOps_DDRM.mult(V, D, temp);
            CommonOps_DDRM.multTransB(temp, V, D);

            return(D);
        }
Exemplo n.º 3
0
        /**
         * <p>
         * Creates a randomly generated set of orthonormal vectors.  At most it can generate the same
         * number of vectors as the dimension of the vectors.
         * </p>
         *
         * <p>
         * This is done by creatingJava.Util.Random vectors then ensuring that they are orthogonal
         * to all the ones previously created with reflectors.
         * </p>
         *
         * <p>
         * NOTE: This employs a brute force O(N<sup>3</sup>) algorithm.
         * </p>
         *
         * @param dimen dimension of the space which the vectors will span.
         * @param numVectors How many vectors it should generate.
         * @param rand Used to createJava.Util.Random vectors.
         * @return Array of NJava.Util.Random orthogonal vectors of unit Count().
         */
        // is there a faster algorithm out there? This one is a bit sluggish
        public static DMatrixRMaj[] span(int dimen, int numVectors, Java.Util.Random rand)
        {
            if (dimen < numVectors)
            {
                throw new ArgumentException("The number of vectors must be less than or equal to the dimension");
            }

            DMatrixRMaj[] u = new DMatrixRMaj[numVectors];

            u[0] = RandomMatrices_DDRM.rectangle(dimen, 1, -1, 1, rand);
            NormOps_DDRM.normalizeF(u[0]);

            for (int i = 1; i < numVectors; i++)
            {
                //            System.out.println(" i = "+i);
                DMatrixRMaj a = new DMatrixRMaj(dimen, 1);
                DMatrixRMaj r = RandomMatrices_DDRM.rectangle(dimen, 1, -1, 1, rand);

                for (int j = 0; j < i; j++)
                {
                    // find a vector that is normal to vector j
                    // u[i] = (1/2)*(r + Q[j]*r)
                    a.setTo(r);
                    VectorVectorMult_DDRM.householder(-2.0, u[j], r, a);
                    CommonOps_DDRM.add(r, a, a);
                    CommonOps_DDRM.scale(0.5, a);

                    //                UtilEjml.print(a);

                    DMatrixRMaj t = a;
                    a = r;
                    r = t;

                    // normalize it so it doesn't get too small
                    double val = NormOps_DDRM.normF(r);
                    if (val == 0 || Double.IsNaN(val) || Double.IsInfinity(val))
                    {
                        throw new SystemException("Failed sanity check");
                    }
                    CommonOps_DDRM.divide(r, val);
                }

                u[i] = r;
            }

            return(u);
        }
Exemplo n.º 4
0
        /**
         * <p>
         * Creates aJava.Util.Random matrix which will have the provided singular values.  The Count() of sv
         * is assumed to be the rank of the matrix.  This can be useful for testing purposes when one
         * needs to ensure that a matrix is not singular but randomly generated.
         * </p>
         *
         * @param numRows Number of rows in generated matrix.
         * @param numCols NUmber of columns in generated matrix.
         * @param randJava.Util.Random number generator.
         * @param sv Singular values of the matrix.
         * @return A new matrix with the specified singular values.
         */
        public static DMatrixRMaj singular(int numRows, int numCols,
                                           Java.Util.Random rand, double[] sv)
        {
            DMatrixRMaj U, V, S;

            // speed it up in compact format
            if (numRows > numCols)
            {
                U = RandomMatrices_DDRM.orthogonal(numRows, numCols, rand);
                V = RandomMatrices_DDRM.orthogonal(numCols, numCols, rand);
                S = new DMatrixRMaj(numCols, numCols);
            }
            else
            {
                U = RandomMatrices_DDRM.orthogonal(numRows, numRows, rand);
                V = RandomMatrices_DDRM.orthogonal(numCols, numCols, rand);
                S = new DMatrixRMaj(numRows, numCols);
            }

            int min = Math.Min(numRows, numCols);

            min = Math.Min(min, sv.Count());

            for (int i = 0; i < min; i++)
            {
                S.set(i, i, sv[i]);
            }

            DMatrixRMaj tmp = new DMatrixRMaj(numRows, numCols);

            CommonOps_DDRM.mult(U, S, tmp);
            S.reshape(numRows, numCols);
            CommonOps_DDRM.multTransB(tmp, V, S);

            return(S);
        }