public HopfieldNetwork()
        {
            InitializeComponent();

            _trainKernel = Convolutions.GetEdgeSet_GuassianThenEdge(5);

            _initialized = true;
        }
Exemplo n.º 2
0
 public ToVectorInstructions(int[] fromSizes, int toSize, ConvolutionBase2D convolution = null, bool shouldNormalize = false, bool isColor2D = false)
 {
     this.FromSizes = fromSizes;
     this.ToSize = toSize;
     this.Convolution = convolution;
     this.ShouldNormalize = shouldNormalize;
     this.IsColor2D = isColor2D;
 }
Exemplo n.º 3
0
 public static Convolution2D Convolute(Convolution2D image, ConvolutionBase2D kernel, string description = "")
 {
     if (kernel is Convolution2D)
     {
         return Convolute_Single(image, (Convolution2D)kernel, description);
     }
     else if (kernel is ConvolutionSet2D)
     {
         return Convolute_Set(image, (ConvolutionSet2D)kernel, description);
     }
     else
     {
         throw new ApplicationException("Unexpected type of kernel: " + kernel.GetType().ToString());
     }
 }
Exemplo n.º 4
0
 public static string GetToolTip(ConvolutionBase2D conv, ConvolutionToolTipType typeSet, ConvolutionToolTipType typeSingle)
 {
     if (conv is ConvolutionSet2D)
     {
         return GetToolTip((ConvolutionSet2D)conv, typeSet);
     }
     else if (conv is Convolution2D)
     {
         return GetToolTip((Convolution2D)conv, typeSingle);
     }
     else
     {
         return "";
     }
 }
Exemplo n.º 5
0
 public DragDataObject(int index, Border control, ConvolutionBase2D kernel)
 {
     this.Index = index;
     this.Control = control;
     this.Kernel = kernel;
 }
        public BrainRGBRecognizer(EditorOptions options, ItemOptions itemOptions, BrainRGBRecognizerDNA dna, IContainer energyTanks)
            : base(options, dna, itemOptions.Brain_Damage.HitpointMin, itemOptions.Brain_Damage.HitpointSlope, itemOptions.Brain_Damage.Damage)
        {
            _itemOptions = itemOptions;
            _energyTanks = energyTanks;

            this.Design = new BrainRGBRecognizerDesign(options, true);
            this.Design.SetDNA(dna);

            _dnaExtra = dna.Extra ?? BrainRGBRecognizerDNAExtra.GetDefaultDNA();

            _isColor = _dnaExtra.IsColor;
            _finalResolution = _dnaExtra.FinalResolution;
            if (_dnaExtra.UseEdgeDetect)
            {
                _convolution = Convolutions.GetEdgeSet_Sobel();
            }
            else
            {
                _convolution = null;
            }

            _somDiscardDupes = _dnaExtra.ShouldSOMDiscardDupes;
            _somIsColor = _isColor;

            _shortTermMemory = new ShortTermMemory<double[]>(itemOptions.ShortTermMemory_MillisecondsBetween, itemOptions.ShortTermMemory_Size);
            //TODO: Get params from itemOptions
            _nonLifeEventSnapshots = new NonLifeEventSnapshots<double[]>();
            //_nonLifeEventSnapshots = new NonLifeEventSnapshots<double[]>(.25, .6, 2);     // faster times for debugging

            GetMass(out _mass, out _volume, out _radius, out _scaleActual, dna, itemOptions);
        }
        private static RecognitionResults RecognizeImage(double[] input, long inputToken, int width, int height, int finalResolution, TrainedRecognizer[] recognizers, LifeEventToVector lifeEvents, ConvolutionBase2D convolution, bool isColor)
        {
            if (recognizers == null)
            {
                return new RecognitionResults(inputToken, new double[lifeEvents.Types.Length]);
            }

            double[] normalized = NormalizeInput(input, width, height, finalResolution, convolution, isColor);

            foreach (var recognizer in recognizers)
            {
                double[] output = recognizer.Network.Compute(normalized);

                //TODO: Analyze outputs of all the recognizers to come up with a final result.  Can't just take the average -- if they all
                //agree, that's great.  But disagreement should have a zero output (or at least a very weak output)
                return new RecognitionResults(inputToken, output);
            }

            throw new ApplicationException("finish this");
        }
Exemplo n.º 8
0
 public static Border GetThumbnail(ConvolutionBase2D conv, int thumbSize, ContextMenu contextMenu, ConvolutionToolTipType typeSet = ConvolutionToolTipType.None, ConvolutionToolTipType typeSingle = ConvolutionToolTipType.Size)
 {
     if (conv is Convolution2D)
     {
         return GetThumbnail_Single((Convolution2D)conv, thumbSize, contextMenu, typeSingle);
     }
     else if (conv is ConvolutionSet2D)
     {
         return GetThumbnail_Set((ConvolutionSet2D)conv, thumbSize, contextMenu, typeSet);
     }
     else
     {
         throw new ArgumentException("Unknown type of kernel: " + conv.GetType().ToString());
     }
 }
Exemplo n.º 9
0
        /// <summary>
        /// This returns some primitive filters that are a good bucket to choose from when you want a random primitive filter
        /// </summary>
        public static Tuple<ConvolutionPrimitiveType, ConvolutionBase2D[]>[] GetPrimitiveConvolutions(ConvolutionPrimitiveType[] filter = null)
        {
            var retVal = new List<Tuple<ConvolutionPrimitiveType, ConvolutionBase2D[]>>();

            List<ConvolutionBase2D> convolutions = new List<ConvolutionBase2D>();

            #region Gaussian
            if (filter == null || filter.Any(o => o == ConvolutionPrimitiveType.Gaussian))
            {
                convolutions.Clear();

                foreach (int size in new[] { 3, 7 })
                {
                    convolutions.Add(GetGaussian(size, 1));
                    convolutions.Add(GetGaussian(size, 2));
                }

                retVal.Add(Tuple.Create(ConvolutionPrimitiveType.Gaussian, convolutions.ToArray()));
            }

            #endregion
            #region Laplacian

            if (filter == null || filter.Any(o => o == ConvolutionPrimitiveType.Laplacian))
            {
                convolutions.Clear();

                foreach (int gain in new[] { 1, 2 })
                {
                    convolutions.Add(GetEdge_Laplacian(true, gain));
                    convolutions.Add(GetEdge_Laplacian(false, gain));
                }

                retVal.Add(Tuple.Create(ConvolutionPrimitiveType.Laplacian, convolutions.ToArray()));
            }

            #endregion
            #region Gaussian Subtract

            if (filter == null || filter.Any(o => o == ConvolutionPrimitiveType.Gaussian_Subtract))
            {
                convolutions.Clear();
                convolutions.Add(new ConvolutionSet2D(new[] { GetGaussian(3, 1) }, SetOperationType.Subtract));

                retVal.Add(Tuple.Create(ConvolutionPrimitiveType.Gaussian_Subtract, convolutions.ToArray()));
            }

            #endregion
            #region Individual Sobel

            if (filter == null || filter.Any(o => o == ConvolutionPrimitiveType.Individual_Sobel))
            {
                convolutions.Clear();

                Convolution2D sobelVert = GetEdge_Sobel(true);
                Convolution2D sobelHorz = GetEdge_Sobel(false);
                Convolution2D sobel45 = Rotate_45(sobelVert, true);
                Convolution2D sobel135 = Rotate_45(sobelHorz, true);
                convolutions.Add(sobelVert);
                convolutions.Add(sobelHorz);
                convolutions.Add(sobel45);
                convolutions.Add(sobel135);
                convolutions.Add(Invert(sobelVert));
                convolutions.Add(Invert(sobelHorz));
                convolutions.Add(Invert(sobel45));
                convolutions.Add(Invert(sobel135));

                retVal.Add(Tuple.Create(ConvolutionPrimitiveType.Individual_Sobel, convolutions.ToArray()));
            }

            #endregion
            #region MaxAbs Sobel

            if (filter == null || filter.Any(o => o == ConvolutionPrimitiveType.MaxAbs_Sobel))
            {
                convolutions.Clear();

                foreach (int gain in new[] { 1, 2 })
                {
                    convolutions.Add(GetEdgeSet_Sobel(gain));
                }

                retVal.Add(Tuple.Create(ConvolutionPrimitiveType.MaxAbs_Sobel, convolutions.ToArray()));
            }

            #endregion
            #region Gausian then edge

            if (filter == null || filter.Any(o => o == ConvolutionPrimitiveType.Gaussian_Then_Edge))
            {
                convolutions.Clear();

                foreach (int size in new[] { 3, 5, 7 })
                {
                    ConvolutionSet2D maxSobel = GetEdgeSet_Sobel();

                    ConvolutionBase2D[] convs = new ConvolutionBase2D[]
                    {
                        GetGaussian(size),
                        maxSobel,
                    };

                    convolutions.Add(new ConvolutionSet2D(convs, SetOperationType.Standard));
                }

                retVal.Add(Tuple.Create(ConvolutionPrimitiveType.Gaussian_Then_Edge, convolutions.ToArray()));
            }

            #endregion

            return retVal.ToArray();
        }
        private static double[] GetValuesFromImage_ConvMaxpool_Gray(FeatureRecognizer_Image image, ConvolutionBase2D kernel, int size, double scaleValue)
        {
            const int INITIALSIZE = 80;

            BitmapSource bitmap = new BitmapImage(new Uri(image.Filename));
            bitmap = UtilityWPF.ResizeImage(bitmap, INITIALSIZE, true);

            Convolution2D retVal = UtilityWPF.ConvertToConvolution(bitmap, scaleValue);
            if (retVal.Width != retVal.Height)
            {
                retVal = Convolutions.ExtendBorders(retVal, INITIALSIZE, INITIALSIZE);        //NOTE: width or height is already the desired size, this will just enlarge the other to make it square
            }

            retVal = Convolutions.Convolute(retVal, kernel);
            retVal = Convolutions.MaxPool(retVal, size, size);
            retVal = Convolutions.Abs(retVal);

            return retVal.Values;
        }
        private static double[] GetValuesFromImage_ConvMaxpool_Color(FeatureRecognizer_Image image, ConvolutionBase2D kernel, int size, double scaleValue)
        {
            const int INITIALSIZE = 80;

            BitmapSource bitmap = new BitmapImage(new Uri(image.Filename));
            bitmap = UtilityWPF.ResizeImage(bitmap, INITIALSIZE, true);

            var convs = UtilityWPF.ConvertToConvolution_RGB(bitmap, scaleValue);

            var final = new[] { convs.Item1, convs.Item2, convs.Item3 }.
                Select(o =>
                {
                    Convolution2D retVal = o;

                    if (retVal.Width != retVal.Height)
                    {
                        retVal = Convolutions.ExtendBorders(retVal, INITIALSIZE, INITIALSIZE);        //NOTE: width or height is already the desired size, this will just enlarge the other to make it square
                    }

                    retVal = Convolutions.Convolute(retVal, kernel);
                    retVal = Convolutions.MaxPool(retVal, size, size);
                    return Convolutions.Abs(retVal);
                }).
                ToArray();

            return MergeConvs(final[0], final[1], final[2]);
        }
        private void InsertKernel(ConvolutionBase2D kernel, int index = -1)
        {
            Border border = Convolutions.GetThumbnail(kernel, 80, _kernelContextMenu);

            if (index < 0)
            {
                panel.Children.Add(border);
                _kernels.Add(kernel);
            }
            else
            {
                panel.Children.Insert(index, border);
                _kernels.Insert(index, kernel);
            }
        }
        private static ReducedExtract[] GetExtractSizes(BitmapSource bitmap, ConvolutionBase2D filter, RectInt rect, int minExtractSize = 10)
        {
            List<ReducedExtract> retVal = new List<ReducedExtract>();

            VectorInt filterReduce = filter == null ? new VectorInt(0, 0) : filter.GetReduction();

            Rect percents = new Rect()
            {
                X = rect.X.ToDouble() / bitmap.PixelWidth.ToDouble(),
                Y = rect.Y.ToDouble() / bitmap.PixelHeight.ToDouble(),
                Width = rect.Width.ToDouble() / bitmap.PixelWidth.ToDouble(),
                Height = rect.Height.ToDouble() / bitmap.PixelHeight.ToDouble(),
            };

            double percent = 1d;

            while (true)
            {
                VectorInt imageSize = new VectorInt()
                {
                    X = (bitmap.PixelWidth * percent).ToInt_Round(),
                    Y = (bitmap.PixelHeight * percent).ToInt_Round(),
                };

                VectorInt postSize = imageSize - filterReduce;

                RectInt newRect = new RectInt()
                {
                    X = (percents.X * postSize.X).ToInt_Round(),
                    Y = (percents.Y * postSize.Y).ToInt_Round(),
                    Width = (percents.Width * postSize.X).ToInt_Round(),
                    Height = (percents.Height * postSize.Y).ToInt_Round(),
                };

                if (newRect.Width < minExtractSize || newRect.Height < minExtractSize)
                {
                    break;
                }

                retVal.Add(new ReducedExtract()
                {
                    Percent = percent,
                    ImageSize = imageSize,
                    Extract = newRect,
                });

                percent *= .75;
            }

            return retVal.ToArray();
        }
        private static void ApplyExtract_Draw_LeftImage(Grid grid, Convolution2D imageConv, ConvolutionBase2D preFilter, ConvolutionResultNegPosColoring edgeColor)
        {
            string tooltip = string.Format("{0}x{1}", imageConv.Width, imageConv.Height);
            if (preFilter != null)
            {
                tooltip = preFilter.Description + "\r\n" + tooltip;
            }

            Image image = new Image()
            {
                Source = Convolutions.GetBitmap(imageConv, edgeColor),
                HorizontalAlignment = HorizontalAlignment.Stretch,
                VerticalAlignment = VerticalAlignment.Stretch,
                ToolTip = tooltip,
            };

            Grid.SetColumn(image, 0);
            Grid.SetRow(image, 0);
            grid.Children.Add(image);
        }
        private void FinishBuildingExtract(ConvolutionBase2D filter, FeatureRecognizer_Extract_Sub[] subs, string imageID)
        {
            string uniqueID = Guid.NewGuid().ToString();

            // Determine filename
            string filename = "extract - " + uniqueID + ".xml";
            string fullFilename = System.IO.Path.Combine(_workingFolder, filename);

            // Add it
            FeatureRecognizer_Extract extract = new FeatureRecognizer_Extract()
            {
                Extracts = subs,
                PreFilter = filter,
                Control = Convolutions.GetThumbnail(subs[0].Extract, THUMBSIZE_EXTRACT, _extractContextMenu),
                ImageID = imageID,
                UniqueID = uniqueID,
                Filename = filename,
            };

            if (extract.PreFilter != null && extract.PreFilter is Convolution2D)
            {
                extract.PreFilterDNA_Single = ((Convolution2D)extract.PreFilter).ToDNA();
            }
            else if (extract.PreFilter != null && extract.PreFilter is ConvolutionSet2D)
            {
                extract.PreFilterDNA_Set = ((ConvolutionSet2D)extract.PreFilter).ToDNA();
            }

            // Copy to the working folder
            UtilityCore.SerializeToFile(fullFilename, extract);

            AddExtract(extract);

            // Update the session file
            SaveSession_SessionFile(_workingFolder);
        }
Exemplo n.º 16
0
        public ConvolutionSet2D(ConvolutionBase2D[] convolutions, SetOperationType operationType, string description = "")
        {
            foreach (object child in convolutions)
            {
                if (!(child is Convolution2D) && !(child is ConvolutionSet2D))
                {
                    throw new ArgumentException("Object passed in must be Convolution2D or ConvolutionSet2D: " + child.GetType().ToString());
                }
            }

            this.Convolutions = convolutions;
            this.OperationType = operationType;
            _description = description;
        }
        private static double[] GetTrainingImage(FeatureRecognizer_Image image, ConvolutionBase2D kernel)
        {
            // Enlarge the initial image by the kernel's reduction so that after convolution, it is the desired size
            VectorInt reduction = kernel.GetReduction();
            if (reduction.X != reduction.Y)
            {
                throw new ApplicationException(string.Format("Kernel should be square: {0}x{1}", reduction.X, reduction.Y));
            }

            BitmapSource bitmap = new BitmapImage(new Uri(image.Filename));
            bitmap = UtilityWPF.ResizeImage(bitmap, IMAGESIZE + reduction.X, true);

            Convolution2D retVal = UtilityWPF.ConvertToConvolution(bitmap, 1d);
            if (retVal.Width != retVal.Height)
            {
                retVal = Convolutions.ExtendBorders(retVal, IMAGESIZE + reduction.X, IMAGESIZE + reduction.X);        //NOTE: width or height is already the desired size, this will just enlarge the other to make it square
            }

            retVal = Convolutions.Convolute(retVal, kernel);
            retVal = Convolutions.Abs(retVal);

            // It looks better when it's black on white
            double[] inverted = retVal.Values.
                Select(o => 1d - o).
                ToArray();

            return inverted;
        }
Exemplo n.º 18
0
        public static ConvolutionSet2D GetEdgeSet_GuassianThenEdge(int guassianSize = 3, double guassianStandardDeviationMultiplier = 1d, double edgeGain = 1d)
        {
            ConvolutionBase2D[] convs = new ConvolutionBase2D[]
            {
                GetGaussian(guassianSize, guassianStandardDeviationMultiplier),
                GetEdgeSet_Sobel(edgeGain),
            };

            string guassianDescription = string.Format("gaussian {0}", guassianSize);
            if (!guassianStandardDeviationMultiplier.IsNearValue(1))
            {
                guassianDescription += " x" + guassianStandardDeviationMultiplier.ToStringSignificantDigits(1);
            }

            string edgeDescription = "edge";
            if (!edgeGain.IsNearValue(1))
            {
                edgeDescription += string.Format(" [gain={0}]", edgeGain.ToStringSignificantDigits(1));
            }

            string description = string.Format("{0} then {1}", guassianDescription, edgeDescription);

            return new ConvolutionSet2D(convs, SetOperationType.Standard, description);
        }
        private void AddKernel(ConvolutionBase2D kernel)
        {
            Border border = Convolutions.GetThumbnail(kernel, 40, null);

            // Store them
            panelKernels.Children.Add(border);
            _kernels.Add(kernel);
        }
Exemplo n.º 20
0
        /// <summary>
        /// This runs the input through NormalizeInput, and returns an object with those results
        /// </summary>
        private static TrainerInput GetTrainingInput(TrainerInput raw, ConvolutionBase2D convolution, bool isColor, int finalResolution)
        {
            var importantEvents = raw.ImportantEvents.
                Select(o =>
                {
                    double[] normalized = NormalizeInput(o.Item2, raw.Width, raw.Height, finalResolution, convolution, isColor);
                    return Tuple.Create(o.Item1, normalized);
                }).
                ToArray();

            var unimportantEvents = raw.UnimportantEvents.
                Select(o => NormalizeInput(o, raw.Width, raw.Height, finalResolution, convolution, isColor)).
                ToArray();

            var awayPoints = GetAwayPoints(importantEvents.Select(o => o.Item2).ToArray());

            //VectorInt reduction;
            //if (convolution == null)
            //{
            //    reduction = new VectorInt(0, 0);
            //}
            //else
            //{
            //    reduction = convolution.GetReduction();
            //}

            return new TrainerInput()
            {
                //Width = raw.Width - reduction.X,
                //Height = raw.Height - reduction.Y,
                Width = finalResolution,
                Height = finalResolution,
                ImportantEvents = importantEvents,
                UnimportantEvents = unimportantEvents.Concat(awayPoints).ToArray(),
                IsColor = isColor,
            };
        }
Exemplo n.º 21
0
        private void AddKernel(ConvolutionBase2D kernel)
        {
            Border border = Convolutions.GetThumbnail(kernel, 40, _kernelContextMenu);

            //if (!string.IsNullOrEmpty(tooltipHeader))
            //{
            //    // For simple (not composite) kernels, it's the image that gets the tooltip.  So if this is one of those, add to the tooltip
            //    if (border.Child is Image)
            //    {
            //        string existingTooltip = ((Image)border.Child).ToolTip as string;

            //        if (!string.IsNullOrEmpty(existingTooltip))
            //        {
            //            ((Image)border.Child).ToolTip = tooltipHeader + "\r\n" + existingTooltip;
            //        }
            //        else
            //        {
            //            border.ToolTip = tooltipHeader;
            //        }
            //    }
            //    else
            //    {
            //        border.ToolTip = tooltipHeader;
            //    }
            //}

            // Store them
            panelKernels.Children.Add(border);
            _kernels.Add(kernel);
        }
Exemplo n.º 22
0
        /// <summary>
        /// The values are from 0 to 255, and need to be 0 to 1
        /// </summary>
        private static double[] NormalizeInput(double[] input, int width, int height, int finalResolution, ConvolutionBase2D convolution, bool isColor)
        {
            // This part is now done earlier on
            //double[] retVal = input.
            //    Select(o => o / 255d).
            //    ToArray();

            double[] retVal = input;

            if (convolution != null)
            {
                if (isColor)
                {
                    // Each pixel in input is R,G,B (so 3 values per pixel).  Each of the 3 colors needs to be run through the
                    // convolution independently.  Then put them back into triples to feed the neural net
                    //
                    // Note that it's ok that they are jumbled up when going to the neural net.  Weights are assigned randomly
                    // before starting training, so it could be all Rs, then all Gs, then Bs, and it wouldn't make any difference.
                    //
                    // But it is important for the convolutions to work with pure 2D images, because the convolutions are
                    // essentially sliding a rectangle across another rectangle, and taking dot products (so rgb triples would
                    // cause the convolution result to be nonsense)

                    // Split into 3 arrays
                    var split = SplitColor_conv(input, width, height);

                    // Convolute independently
                    Convolution2D r = Convolutions.Convolute(split.Item1, convolution);
                    Convolution2D g = Convolutions.Convolute(split.Item2, convolution);
                    Convolution2D b = Convolutions.Convolute(split.Item3, convolution);

                    r = Convolutions.MaxPool(r, finalResolution, finalResolution);
                    g = Convolutions.MaxPool(g, finalResolution, finalResolution);
                    b = Convolutions.MaxPool(b, finalResolution, finalResolution);

                    // Put back into one large array (but smaller than the original)
                    retVal = MergeColor(r, g, b);
                }
                else
                {
                    Convolution2D convoluted = Convolutions.Convolute(new Convolution2D(input, width, height, false), convolution);
                    convoluted = Convolutions.MaxPool(convoluted, finalResolution, finalResolution);
                    retVal = convoluted.Values;
                }
            }

            return retVal;
        }
Exemplo n.º 23
0
        private void ApplyFilter(ConvolutionBase2D kernel)
        {
            // Convert the original image to grayscale
            Convolution2D image = GetOriginalImageGrays();
            if (image == null)
            {
                // The original image is empty
                return;
            }

            Convolution2D filtered = null;

            if (kernel is Convolution2D)
            {
                #region Single

                Convolution2D kernelSingle = (Convolution2D)kernel;

                // This window builds kernels without gain or iterations, so make a clone with those tacked on
                Convolution2D kernelFinal = new Convolution2D(
                    kernelSingle.Values,
                    kernelSingle.Width,
                    kernelSingle.Height,
                    kernelSingle.IsNegPos,
                    trkGain.Value,
                    Convert.ToInt32(trkIterations.Value),
                    chkExpandBorder.IsChecked.Value);

                filtered = Convolutions.Convolute(image, kernelFinal);

                if (chkSubtract.IsChecked.Value)
                {
                    filtered = Convolutions.Subtract(image, filtered);
                }

                #endregion
            }
            else if (kernel is ConvolutionSet2D)
            {
                #region Set

                ConvolutionSet2D kernelSet = (ConvolutionSet2D)kernel;

                filtered = Convolutions.Convolute(image, kernelSet);

                #endregion
            }
            else
            {
                throw new ArgumentException("Unknown type of kernel: " + kernel.GetType().ToString());
            }

            // Show Filtered
            modifiedImage.Source = Convolutions.GetBitmap(filtered, (ConvolutionResultNegPosColoring)cboEdgeColors.SelectedValue);
        }
Exemplo n.º 24
0
        private static TrainedRecognizer Train(TrainerInput input, ConvolutionBase2D convolution, bool isColor, int finalResolution)
        {
            if (input == null || input.ImportantEvents == null || input.ImportantEvents.Length == 0)
            {
                return null;
            }

            TrainerInput normalized = GetTrainingInput(input, convolution, isColor, finalResolution);

            List<double[]> inputs = new List<double[]>();
            List<double[]> outputs = new List<double[]>();

            // Important Events
            inputs.AddRange(normalized.ImportantEvents.Select(o => o.Item2));
            outputs.AddRange(normalized.ImportantEvents.Select(o => o.Item1.Vector));

            // Unimportant Events (sensor input that should output zeros)
            if (normalized.UnimportantEvents != null && normalized.UnimportantEvents.Length > 0)
            {
                int outputVectorLength = outputs[0].Length;

                inputs.AddRange(normalized.UnimportantEvents);
                outputs.AddRange(Enumerable.Range(0, normalized.UnimportantEvents.Length).
                    Select(o => new double[outputVectorLength]));
            }

            //NOTE: If there is an exception, the network couldn't be trained
            BasicNetwork network = null;
            try
            {
                //network = UtilityEncog.GetTrainedNetwork(inputs.ToArray(), outputs.ToArray(), UtilityEncog.ERROR, 15, 45).NetworkOrNull;
                network = UtilityEncog.GetTrainedNetwork(inputs.ToArray(), outputs.ToArray(), UtilityEncog.ERROR, 5, 15).NetworkOrNull;
            }
            catch (Exception) { }

            if (network == null)
            {
                return null;
            }

            return new TrainedRecognizer()
            {
                Network = network,
                InputRaw = input,
                InputNormalized = normalized,
            };
        }
Exemplo n.º 25
0
 /// <param name="itemDimensions">
 /// The width, height, depth, etc of each item
 /// </param>
 /// <param name="convolution">
 /// This gives a chance to run an edge detect, or some other convolution
 /// TODO: Support convolutions that can handle arbitrary dimensions
 /// </param>
 /// <param name="shouldNormalize">
 /// Forces all inputs to go between 0 and 1.
 /// NOTE: Only do this if the inputs come from varied sources
 /// </param>
 /// <param name="dupeDistance">
 /// If two items are closer together than this, they will be treated like they are the same.
 /// NOTE: If all the inputs are 0 to 1 (or even -1 to 1), then the default value should be fine.  But if the
 /// inputs have larger values (like 0 to 255), you would want a larger min value
 /// </param>
 public SOMList(int[] itemDimensions, ConvolutionBase2D convolution = null, bool shouldNormalize = false, bool discardDupes = true, double dupeDistance = .001, bool isColor2D = false)
 {
     _instructions = new ToVectorInstructions(itemDimensions, GetResize(itemDimensions), convolution, shouldNormalize, isColor2D);
     _dupeDistSquared = dupeDistance * dupeDistance;
 }