Exemplo n.º 1
0
        //Runs the algoritm for number of iterations
        public override void Run(Configuration config)
        {
            log = new RandomLogSpecification(data.DataFileName, config.RandomSeed, config.NumberOfRuns, config.PenaltyCoefficient);
            solution = new SolutionSpecification();

            BitArray routerswitches = new BitArray((int)data.RouterCount);
            double highestfitness = 0.0;
            BitArray best = new BitArray((int)data.RouterCount);
            for(int i = 0; i < config.NumberOfRuns; i++)
            {
                routerswitches = new BitArray((int)data.RouterCount);
                int numbertoswitch = randomgenerator.Next((int)data.RouterCount);
                for(int j = 0; j < numbertoswitch; j++)
                {
                    int switching;
                    while(routerswitches.Get(switching = randomgenerator.Next((int)data.RouterCount)) == true);
                    routerswitches.Set(switching, true);
                }

                double fitness = FitnessEvaluation(data.NetworkPaths, routerswitches, numbertoswitch, config.PenaltyCoefficient);

                if(fitness > highestfitness)
                {
                    ((RandomLogSpecification)log).AddEvaluation(i, fitness);
                    highestfitness = fitness;
                    best = (BitArray)routerswitches.Clone();
                }
            }

            solution.RoutersTurnedOff = ExtensionMethods.ConvertBitArrayToOffRouterNumbers(best, data.HostCount);
        }
Exemplo n.º 2
0
        public static void Main(string[] args)
        {
            string filename;
            if(args.Length == 0)
                filename = "default.cfg";
              else
                filename = args[0];

            Configuration config = new Configuration();
            try
            {
                config.loadFromFile(filename);
            }
            catch(Exception e)
            {
                Console.WriteLine("Main Exception: " + e.Message);
                return;
            }

            Console.WriteLine(config);

            //Do some reflection on types that can be used as an evolutionary algorithm.
            var types = Assembly.GetExecutingAssembly().GetTypes();

            EvolutionaryAlgorithm algorithm = null;
            //I know there is a better way to do this.
            foreach(Type t in types)
            {
                foreach(Attribute a in t.GetCustomAttributes(typeof(AlgorithmAttribute), true))
                {
                    if(((AlgorithmAttribute)a).AlgorithmType == config.AlgorithmType)
                        algorithm = (EvolutionaryAlgorithm)Activator.CreateInstance(t);
                }
            }

            //Get a random number generator with a set seed, or a time seed.
            Random randomgenerator;
            if(config.RandomSeed < 0)
                randomgenerator = new Random();
            else
                randomgenerator = new Random(config.RandomSeed);

            algorithm.RandomGenerator = randomgenerator;
            algorithm.Data = config.getDataFile();
            algorithm.Run(config);

            //Output stuff to files
            algorithm.Log.writeToFile(config.LogFilePath);
            algorithm.Solution.writeToFile(config.SolutionFilePath);
        }
Exemplo n.º 3
0
 public abstract void Run(Configuration config);
Exemplo n.º 4
0
        //Runs the algoritm for number of iterations
        public override void Run(Configuration config)
        {
            Stopwatch totaltimer = Stopwatch.StartNew();
            //Local population average and best fitness
            double localaveragefitness = 0.0;
            double localbestfitness = 0.0;
            //Best solution per run
            Individual bestsolution = null;
            //Best solution overall
            Individual bestbestsolution = null;

            log = new MuLambdaLogSpecification(config);
            solution = new SolutionSpecification();
            this.config = config;

            for(int run = 0; run < config.NumberOfRuns; run++)
            {
                Stopwatch runtimer = Stopwatch.StartNew();
                Console.WriteLine("Run: " + run);
                bestsolution = null;
                fitnessevaluations = 0;
                int samefitnessiterations = 0;
                //Initialize our population
                Stopwatch inittimer = Stopwatch.StartNew();
                List<Individual> population = InitUniformRandomPopulation(config.PopulationSize, (int)data.RouterCount);
                inittimer.Stop();
                Console.WriteLine("Init time(ms): " + inittimer.Elapsed.TotalMilliseconds);
                List<Individual> children = new List<Individual>();

                //Forever, until broken out of
                for(;;)
                {
                    //Generation of children (lambda)
                    Stopwatch generationtimer = Stopwatch.StartNew();
                    for(int k = 0; k < config.NumberOfChildren; k++)
                    {
                        Individual parenta;
                        Individual parentb;
                        if(config.UseKTournamentForParent)
                        {
                            //Choose parents by K Tournament selection with replacement.
                            parenta = KTournamentSelection(config.ParentTournamentSize, population, true);
                            parentb = KTournamentSelection(config.ParentTournamentSize, population, true);
                        }
                        else // if(config.UseFitnessProportionForParent)
                        {
                            //Choose parents by fitness proportional selection
                            parenta = FitnessProportionalSelection(population);
                            parentb = FitnessProportionalSelection(population);
                        }
                        if(config.UseNCrossover)
                        {
                            //Generate child by using n point crossover
                            Individual child = GenerateChildNPoint(new Individual[2] { parenta, parentb }, config.NumberOfCrossoverPoints);
                            children.Add(child);
                        }
                        else // if(config.UseUniformCrossover)
                        {
                            //Generate child by using uniform crossover
                            Individual child = GenerateChildUniform(parenta, parentb);
                            children.Add(child);
                        }
                    }
                    //Mutation of children by bit flip
                    //This also adds the childs to the population
                    for(int a = 0; a < children.Count; a++)
                    {
                        children[a] = MutateByBitFlip(children[a], config.BitsToFlip);
                        population.Add(children[a]);
                    }

                    List<Individual> newpopulation = new List<Individual>();
                    localaveragefitness = 0.0;
                    localbestfitness = 0.0;

                    if(config.UseKTournamentForSurvivor)
                    {
                        //Finding the survivors for the new population
                        for(int i = 0; i < config.PopulationSize; i++)
                        {
                            //Use K Tournament without replacement
                            Individual survivor = KTournamentSelection(config.SurvivorTournamentSize, population, false);

                            newpopulation.Add(survivor);
                            //Adjust average and best fitnesses
                            localaveragefitness += survivor.Fitness;
                            if(survivor.Fitness > localbestfitness)
                                localbestfitness = survivor.Fitness;
                        }
                        localaveragefitness /= (double)config.PopulationSize;
                    }
                    else // if(config.UseTruncationForSurvivor)
                    {
                        //Find survivors using truncation. This also adjusts best and average fitnesses.
                        newpopulation = Truncate(population, config.PopulationSize, out localbestfitness, out localaveragefitness);
                    }
                    population = newpopulation;

                    //If it is the first iteration, or we found a new best solution.
                    if(bestsolution == null || newpopulation[0].Fitness > bestsolution.Fitness)
                    {
                        samefitnessiterations = 0;
                        bestsolution = newpopulation[0];
                    }
                    //Otherwise no new best found.
                    else
                    {
                        samefitnessiterations++;
                    }
                    generationtimer.Stop();
                    Console.WriteLine("Generation time(s): " + generationtimer.Elapsed.TotalMilliseconds / 1000);
                    Console.WriteLine(fitnessevaluations + " " + localaveragefitness + " " + localbestfitness);
                    //Add generation to log
                    ((MuLambdaLogSpecification)log).AddEvalListing(run, fitnessevaluations, localaveragefitness, localbestfitness);
                    //If we hit the termination number of same best fitness (t) or the number of fitness evals is >= the max.
                    if(samefitnessiterations >= config.TerminationConvergence || fitnessevaluations >= config.NumberOfEvals )
                        break;
                }
                //Grab the possible global best solution
                if(bestbestsolution == null || bestsolution.Fitness > bestbestsolution.Fitness)
                {
                    bestbestsolution = bestsolution;
                }
                runtimer.Stop();
                Console.WriteLine("Run time(s): " + runtimer.Elapsed.TotalMilliseconds / 1000);
            }
            totaltimer.Stop();
            Console.WriteLine("Total time(s): " + totaltimer.Elapsed.TotalMilliseconds / 1000);
            //Give the router numbers that were turned off to the solution.
            solution.RoutersTurnedOff = ExtensionMethods.ConvertBitArrayToOffRouterNumbers(bestbestsolution.Chromosome, data.HostCount);
        }
Exemplo n.º 5
0
        //Runs the algoritm for number of iterations
        public override void Run(Configuration config)
        {
            this.config = config;
            //Prepare solution and log files
            log = new MuLambdaLogSpecification(config);
            solution = new NsgaIISolutionSpecification();

            //For finding global best pareto front
            double bestaverage = 0.0;
            List<Individual> bestpopulation = new List<Individual>();

            for(int run = 0; run < config.NumberOfRuns; run++)
            {
                //Reset fitness evals every run
                fitnessevaluations = 0;
                Console.WriteLine("Run: " + (run + 1));
                //Randomly initialize
                List<Individual> population = InitUniformRandomPopulation(config.PopulationSize, (int)data.RouterCount);
                //Sort that population into pareto fronts
                population = FastNonDominatedSort(population);
                //Forever (until broken out of)
                for(;;)
                {
                    List<Individual> childrens = new List<Individual>();
                    //Create children by selecting parents with binary tournament selection
                    //And recombinating with N Point crossover
                    for(int i = 0; i < config.NumberOfChildren; i++)
                    {
                        Individual parenta = BinaryTournamentSelection(population);
                        Individual parentb = BinaryTournamentSelection(population);
                        childrens.Add(GenerateChildNPoint(new Individual[] { parenta, parentb }, config.NumberOfCrossoverPoints));
                    }
                    //Mutate the childrens
                    for(int j = 0; j < childrens.Count; j++)
                    {
                        population.Add(MutateByBitFlip(childrens[j], config.BitsToFlip));
                    }
                    //For holding the local best and local average
                    double localbestfitness = 0.0;
                    double localaveragefitness = 0.0;
                    //Sort the population
                    population = FastNonDominatedSort(population);
                    //Get rid of the worst pareto fronts
                    population = Truncate(population, config.PopulationSize, out localbestfitness, out localaveragefitness);

                    //Output to log file
                    ((MuLambdaLogSpecification)log).AddEvalListing(run, fitnessevaluations, localaveragefitness, localbestfitness);
                    Console.WriteLine(fitnessevaluations + " " + localaveragefitness + " " + localbestfitness);
                    //If we have run over the max of fitness evaluations
                    if(fitnessevaluations > config.NumberOfEvals)
                    {
                        //See if the new average is the best average.
                        if(localaveragefitness > bestaverage)
                        {
                            bestaverage = localaveragefitness;
                            bestpopulation = population;
                        }
                        break;
                    }
                }
            }

            //Get the best pareto front
            ((NsgaIISolutionSpecification)solution).BestParetoFront = bestpopulation.GetRange(0, bestpopulation.FindIndex(delegate(Individual i) { return i.ParetoFrontRank == 2; }) - 1);
            ((NsgaIISolutionSpecification)solution).HostOffset = (uint)data.HostCount;
        }
Exemplo n.º 6
0
 public MuLambdaLogSpecification(Configuration config)
     : base(config.DataFilePath, config.RandomSeed, config.NumberOfRuns, config.PenaltyCoefficient)
 {
     this.config = config;
     runlisting = new Dictionary<int, List<EvalInfo>>();
 }