private void ProcessTrain()
        {
            if (network == null)
                return;

            String strMode = GetArg("mode");
            String strMinutes = GetArg("minutes");
            String strStrategyError = GetArg("strategyerror");
            String strStrategyCycles = GetArg("strategycycles");

            app.WriteLine("Training Beginning... Output patterns="
                          + outputCount);

            double strategyError = double.Parse(strStrategyError);
            int strategyCycles = int.Parse(strStrategyCycles);

            var train = new ResilientPropagation(network, training);
            train.AddStrategy(new ResetStrategy(strategyError, strategyCycles));

            if (String.Compare(strMode, "gui", true) == 0)
            {
                EncogUtility.TrainDialog(train, network, training);
            }
            else
            {
                int minutes = int.Parse(strMinutes);
                EncogUtility.TrainConsole(train, network, training,
                                          minutes);
            }
            app.WriteLine("Training Stopped...");
        }
Exemplo n.º 2
0
        /// <inheritdoc/>
        public override void CreateTrainer(OpenCLTrainingProfile profile, bool singleThreaded)
        {
            Propagation.Propagation train = new ResilientPropagation(Network,
                    Training, profile, InitialUpdate, MaxStep);

            if (singleThreaded)
                train.NumThreads = 1;
            else
                train.NumThreads = 0;


            foreach (IStrategy strategy in Strategies)
            {
                train.AddStrategy(strategy);
            }

            Train = train;
        }
Exemplo n.º 3
0
        /// <summary>
        /// Perform an individual job unit, which is a single network to train and
        /// evaluate.
        /// </summary>
        ///
        /// <param name="context">Contains information about the job unit.</param>
        public override sealed void PerformJobUnit(JobUnitContext context)
        {
            var network = (BasicNetwork) context.JobUnit;
            BufferedMLDataSet buffer = null;
            IMLDataSet useTraining = _training;

            if (_training is BufferedMLDataSet)
            {
                buffer = (BufferedMLDataSet) _training;
                useTraining = (buffer.OpenAdditional());
            }

            // train the neural network

            double error = Double.PositiveInfinity;
            for (int z = 0; z < _weightTries; z++)
            {
                network.Reset();
                Propagation train = new ResilientPropagation(network,
                                                             useTraining);
                var strat = new StopTrainingStrategy(0.001d,
                                                     5);

                train.AddStrategy(strat);
                train.ThreadCount = 1; // force single thread mode

                for (int i = 0;
                     (i < _iterations) && !ShouldStop
                     && !strat.ShouldStop();
                     i++)
                {
                    train.Iteration();
                }

                error = Math.Min(error, train.Error);
            }

            if (buffer != null)
            {
                buffer.Close();
            }

            if (!ShouldStop)
            {
                // update min and max

                _high = Math.Max(_high, error);
                _low = Math.Min(_low, error);

                if (_hidden1Size > 0)
                {
                    int networkHidden1Count;
                    int networkHidden2Count;

                    if (network.LayerCount > 3)
                    {
                        networkHidden2Count = network.GetLayerNeuronCount(2);
                        networkHidden1Count = network.GetLayerNeuronCount(1);
                    }
                    else
                    {
                        networkHidden2Count = 0;
                        networkHidden1Count = network.GetLayerNeuronCount(1);
                    }

                    int row, col;

                    if (_hidden2Size == 0)
                    {
                        row = networkHidden1Count - _hidden[0].Min;
                        col = 0;
                    }
                    else
                    {
                        row = networkHidden1Count - _hidden[0].Min;
                        col = networkHidden2Count - _hidden[1].Min;
                    }

                    if ((row < 0) || (col < 0))
                    {
                        Console.Out.WriteLine("STOP");
                    }
                    _results[row][col] = error;
                }

                // report status
                _currentTry++;

                UpdateBest(network, error);
                ReportStatus(
                    context,
                    "Current: "
                    + NetworkToString(network)
                    + "; Best: "
                    + NetworkToString(_bestNetwork));
            }
        }
Exemplo n.º 4
0
 public override sealed void PerformJobUnit(JobUnitContext context)
 {
     double num;
     int num2;
     int num3;
     int num4;
     int layerNeuronCount;
     int num6;
     int num7;
     BasicNetwork jobUnit = (BasicNetwork) context.JobUnit;
     BufferedMLDataSet set = null;
     IMLDataSet training = this._x823a2b9c8bf459c5;
     if (this._x823a2b9c8bf459c5 is BufferedMLDataSet)
     {
         set = (BufferedMLDataSet) this._x823a2b9c8bf459c5;
         if ((((uint) num) + ((uint) num2)) > uint.MaxValue)
         {
             goto Label_02BB;
         }
     }
     else
     {
         if (((uint) num4) > uint.MaxValue)
         {
             goto Label_0302;
         }
         goto Label_02BB;
     }
     training = set.OpenAdditional();
     goto Label_0302;
     Label_0011:
     this._x7ca40c9a68f86359++;
     this.x6aa420caefd31103(jobUnit, num);
     base.ReportStatus(context, "Current: " + NetworkToString(jobUnit) + "; Best: " + NetworkToString(this._x61bb83c40eed7f47));
     if (((uint) num) >= 0)
     {
         return;
     }
     if (((uint) layerNeuronCount) <= uint.MaxValue)
     {
         goto Label_0104;
     }
     if ((((uint) layerNeuronCount) | 3) == 0)
     {
     }
     Label_0090:
     if (num6 >= 0)
     {
         if (num7 >= 0)
         {
             goto Label_00A7;
         }
     }
     else if (0 != 0)
     {
         goto Label_00B9;
     }
     Console.Out.WriteLine("STOP");
     Label_00A7:
     this._xd559aa34776631a5[num6][num7] = num;
     goto Label_0011;
     Label_00B9:
     if (this._xe4e6a25eae13e4b3 > 0)
     {
         goto Label_0188;
     }
     if (0 == 0)
     {
         if ((((uint) num3) & 0) != 0)
         {
             return;
         }
         goto Label_0011;
     }
     Label_0104:
     num7 = 0;
     goto Label_0090;
     Label_0125:
     num4 = jobUnit.GetLayerNeuronCount(1);
     Label_012E:
     if (this._x5426aa354995e9e0 != 0)
     {
         num6 = num4 - this._xab3ddaff42dd298a[0].Min;
         num7 = layerNeuronCount - this._xab3ddaff42dd298a[1].Min;
         goto Label_0090;
     }
     num6 = num4 - this._xab3ddaff42dd298a[0].Min;
     if ((((uint) num3) | 0xfffffffe) != 0)
     {
         goto Label_0104;
     }
     return;
     Label_0188:
     if (jobUnit.LayerCount <= 3)
     {
         layerNeuronCount = 0;
         goto Label_0125;
     }
     layerNeuronCount = jobUnit.GetLayerNeuronCount(2);
     num4 = jobUnit.GetLayerNeuronCount(1);
     goto Label_012E;
     Label_0195:
     if (base.ShouldStop)
     {
         return;
     }
     this._x628ea9b89457a2a9 = Math.Max(this._x628ea9b89457a2a9, num);
     this._xd12d1dba8a023d95 = Math.Min(this._xd12d1dba8a023d95, num);
     if ((((uint) num2) + ((uint) num6)) <= uint.MaxValue)
     {
         goto Label_00B9;
     }
     goto Label_0188;
     Label_02BB:
     num = double.PositiveInfinity;
     num2 = 0;
     Label_0217:
     if (num2 < this._xe009ad1bd0a8245a)
     {
         StopTrainingStrategy strategy;
         jobUnit.Reset();
         Encog.Neural.Networks.Training.Propagation.Propagation propagation = new ResilientPropagation(jobUnit, training);
         if ((((uint) num) - ((uint) num3)) >= 0)
         {
             strategy = new StopTrainingStrategy(0.001, 5);
         }
         propagation.AddStrategy(strategy);
         propagation.ThreadCount = 1;
         num3 = 0;
         while (true)
         {
             if ((num3 < this._xdbf51c857aeb8093) && (!base.ShouldStop && !strategy.ShouldStop()))
             {
                 propagation.Iteration();
             }
             else
             {
                 num = Math.Min(num, propagation.Error);
                 if (4 != 0)
                 {
                     num2++;
                     goto Label_0217;
                 }
                 goto Label_0195;
             }
             num3++;
         }
     }
     while (set != null)
     {
         set.Close();
         if (((uint) num4) <= uint.MaxValue)
         {
             break;
         }
     }
     goto Label_0195;
     Label_0302:
     if ((((uint) num4) - ((uint) layerNeuronCount)) < 0)
     {
         goto Label_0125;
     }
     goto Label_02BB;
 }