Exemplo n.º 1
0
        public void ClassifiesSmallImages()
        {
            var network = new PerceptronFactory().BuildPerceptron(100);

            var aSet = new InputProcessor(@"..\..\trainingsets\dataset1\A");
            var bSet = new InputProcessor(@"..\..\trainingsets\dataset1\B");

            var trainingSet = new List <KeyValuePair <double, double[]> >
            {
                new KeyValuePair <double, double[]>(1.0, aSet.BmpToBinaryArr(@"1.jpg")),
                new KeyValuePair <double, double[]>(1.0, aSet.BmpToBinaryArr(@"2.jpg")),
                new KeyValuePair <double, double[]>(1.0, aSet.BmpToBinaryArr(@"3.jpg")),
                new KeyValuePair <double, double[]>(1.0, aSet.BmpToBinaryArr(@"4.jpg")),
                new KeyValuePair <double, double[]>(1.0, aSet.BmpToBinaryArr(@"5.jpg")),

                new KeyValuePair <double, double[]>(0.0, bSet.BmpToBinaryArr(@"1.jpg")),
                new KeyValuePair <double, double[]>(0.0, bSet.BmpToBinaryArr(@"2.jpg")),
                new KeyValuePair <double, double[]>(0.0, bSet.BmpToBinaryArr(@"3.jpg")),
                new KeyValuePair <double, double[]>(0.0, bSet.BmpToBinaryArr(@"4.jpg")),
                new KeyValuePair <double, double[]>(0.0, bSet.BmpToBinaryArr(@"5.jpg")),
            };

            network.Train(trainingSet);

            trainingSet.ForEach(kvp => Assert.AreEqual(kvp.Key, network.Classify(kvp.Value)));
        }
Exemplo n.º 2
0
        public void CanReadBitmapsIntoArrs()
        {
            var aSet = new InputProcessor(@"..\..\trainingsets\dataset1\A");

            double[] arr = aSet.BmpToBinaryArr(@"1.jpg");

            Assert.AreEqual(100, arr.Length);
        }
        public void CanReadBitmapsIntoArrs()
        {
            var aSet = new InputProcessor(@"..\..\trainingsets\dataset1\A");

            double[] arr = aSet.BmpToBinaryArr(@"1.jpg");

            Assert.AreEqual(100, arr.Length);
        }
        public void GeneralisesSmallImages()
        {
            var network = new PerceptronFactory().BuildPerceptron(100);

            var aSet = new InputProcessor(@"..\..\trainingsets\dataset1\A");
            var bSet = new InputProcessor(@"..\..\trainingsets\dataset1\B");

            var trainingSet = new List<KeyValuePair<double, double[]>>
            {
                new KeyValuePair<double, double[]>( 1.0, aSet.BmpToBinaryArr(@"1.jpg") ),
                new KeyValuePair<double, double[]>( 1.0, aSet.BmpToBinaryArr(@"2.jpg") ),
                new KeyValuePair<double, double[]>( 1.0, aSet.BmpToBinaryArr(@"3.jpg") ),
                new KeyValuePair<double, double[]>( 1.0, aSet.BmpToBinaryArr(@"4.jpg") ),
                new KeyValuePair<double, double[]>( 1.0, aSet.BmpToBinaryArr(@"5.jpg") ),

                new KeyValuePair<double, double[]>( 0.0, bSet.BmpToBinaryArr(@"1.jpg") ),
                new KeyValuePair<double, double[]>( 0.0, bSet.BmpToBinaryArr(@"2.jpg") ),
                new KeyValuePair<double, double[]>( 0.0, bSet.BmpToBinaryArr(@"3.jpg") ),
                new KeyValuePair<double, double[]>( 0.0, bSet.BmpToBinaryArr(@"4.jpg") ),
                new KeyValuePair<double, double[]>( 0.0, bSet.BmpToBinaryArr(@"5.jpg") ),
            };

            network.Train(trainingSet);

            Assert.AreEqual(1.0, network.Classify(aSet.BmpToBinaryArr(@"7.jpg")));
            Assert.AreEqual(0.0, network.Classify(bSet.BmpToBinaryArr(@"7.jpg")));
        }