public AbstractEvaluate(RNNOptions options)
 {
     // the matrix will be [gold][predicted]
     // TODO: make this an option
     this.op = options;
     this.Reset();
 }
        /// <summary>
        /// Expected arguments are
        /// <c>-gold gold -predicted predicted</c>
        /// For example <br />
        /// <c>java edu.stanford.nlp.sentiment.ExternalEvaluate annotatedTrees.txt predictedTrees.txt</c>
        /// </summary>
        public static void Main(string[] args)
        {
            RNNOptions curOptions    = new RNNOptions();
            string     goldPath      = null;
            string     predictedPath = null;

            for (int argIndex = 0; argIndex < args.Length;)
            {
                if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-gold"))
                {
                    goldPath  = args[argIndex + 1];
                    argIndex += 2;
                }
                else
                {
                    if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-predicted"))
                    {
                        predictedPath = args[argIndex + 1];
                        argIndex     += 2;
                    }
                    else
                    {
                        int newArgIndex = curOptions.SetOption(args, argIndex);
                        if (newArgIndex == argIndex)
                        {
                            throw new ArgumentException("Unknown argument " + args[argIndex]);
                        }
                        argIndex = newArgIndex;
                    }
                }
            }
            if (goldPath == null)
            {
                log.Info("goldPath not set. Exit.");
                System.Environment.Exit(-1);
            }
            if (predictedPath == null)
            {
                log.Info("predictedPath not set. Exit.");
                System.Environment.Exit(-1);
            }
            // filterUnknown not supported because I'd need to know which sentences
            // are removed to remove them from predicted
            IList <Tree> goldTrees      = SentimentUtils.ReadTreesWithGoldLabels(goldPath);
            IList <Tree> predictedTrees = SentimentUtils.ReadTreesWithPredictedLabels(predictedPath);

            Edu.Stanford.Nlp.Sentiment.ExternalEvaluate evaluator = new Edu.Stanford.Nlp.Sentiment.ExternalEvaluate(curOptions, predictedTrees);
            evaluator.Eval(goldTrees);
            evaluator.PrintSummary();
        }
 private SentimentModel(TwoDimensionalMap <string, string, SimpleMatrix> binaryTransform, TwoDimensionalMap <string, string, SimpleTensor> binaryTensors, TwoDimensionalMap <string, string, SimpleMatrix> binaryClassification, IDictionary <string,
                                                                                                                                                                                                                                              SimpleMatrix> unaryClassification, IDictionary <string, SimpleMatrix> wordVectors, RNNOptions op)
 {
     this.op = op;
     this.binaryTransform      = binaryTransform;
     this.binaryTensors        = binaryTensors;
     this.binaryClassification = binaryClassification;
     this.unaryClassification  = unaryClassification;
     this.wordVectors          = wordVectors;
     this.numClasses           = op.numClasses;
     if (op.numHid <= 0)
     {
         int nh = 0;
         foreach (SimpleMatrix wv in wordVectors.Values)
         {
             nh = wv.GetNumElements();
         }
         this.numHid = nh;
     }
     else
     {
         this.numHid = op.numHid;
     }
     this.numBinaryMatrices = binaryTransform.Size();
     binaryTransformSize    = numHid * (2 * numHid + 1);
     if (op.useTensors)
     {
         binaryTensorSize = numHid * numHid * numHid * 4;
     }
     else
     {
         binaryTensorSize = 0;
     }
     binaryClassificationSize = (op.combineClassification) ? 0 : numClasses * (numHid + 1);
     numUnaryMatrices         = unaryClassification.Count;
     unaryClassificationSize  = numClasses * (numHid + 1);
     rand     = new Random(op.randomSeed);
     identity = SimpleMatrix.Identity(numHid);
 }
        /// <summary>The traditional way of initializing an empty model suitable for training.</summary>
        public SentimentModel(RNNOptions op, IList <Tree> trainingTrees)
        {
            this.op = op;
            rand    = new Random(op.randomSeed);
            if (op.randomWordVectors)
            {
                InitRandomWordVectors(trainingTrees);
            }
            else
            {
                ReadWordVectors();
            }
            if (op.numHid > 0)
            {
                this.numHid = op.numHid;
            }
            else
            {
                int size = 0;
                foreach (SimpleMatrix vector in wordVectors.Values)
                {
                    size = vector.GetNumElements();
                    break;
                }
                this.numHid = size;
            }
            TwoDimensionalSet <string, string> binaryProductions = TwoDimensionalSet.HashSet();

            if (op.simplifiedModel)
            {
                binaryProductions.Add(string.Empty, string.Empty);
            }
            else
            {
                // TODO
                // figure out what binary productions we have in these trees
                // Note: the current sentiment training data does not actually
                // have any constituent labels
                throw new NotSupportedException("Not yet implemented");
            }
            ICollection <string> unaryProductions = Generics.NewHashSet();

            if (op.simplifiedModel)
            {
                unaryProductions.Add(string.Empty);
            }
            else
            {
                // TODO
                // figure out what unary productions we have in these trees (preterminals only, after the collapsing)
                throw new NotSupportedException("Not yet implemented");
            }
            this.numClasses      = op.numClasses;
            identity             = SimpleMatrix.Identity(numHid);
            binaryTransform      = TwoDimensionalMap.TreeMap();
            binaryTensors        = TwoDimensionalMap.TreeMap();
            binaryClassification = TwoDimensionalMap.TreeMap();
            // When making a flat model (no symantic untying) the
            // basicCategory function will return the same basic category for
            // all labels, so all entries will map to the same matrix
            foreach (Pair <string, string> binary in binaryProductions)
            {
                string left  = BasicCategory(binary.first);
                string right = BasicCategory(binary.second);
                if (binaryTransform.Contains(left, right))
                {
                    continue;
                }
                binaryTransform.Put(left, right, RandomTransformMatrix());
                if (op.useTensors)
                {
                    binaryTensors.Put(left, right, RandomBinaryTensor());
                }
                if (!op.combineClassification)
                {
                    binaryClassification.Put(left, right, RandomClassificationMatrix());
                }
            }
            numBinaryMatrices   = binaryTransform.Size();
            binaryTransformSize = numHid * (2 * numHid + 1);
            if (op.useTensors)
            {
                binaryTensorSize = numHid * numHid * numHid * 4;
            }
            else
            {
                binaryTensorSize = 0;
            }
            binaryClassificationSize = (op.combineClassification) ? 0 : numClasses * (numHid + 1);
            unaryClassification      = Generics.NewTreeMap();
            // When making a flat model (no symantic untying) the
            // basicCategory function will return the same basic category for
            // all labels, so all entries will map to the same matrix
            foreach (string unary in unaryProductions)
            {
                unary = BasicCategory(unary);
                if (unaryClassification.Contains(unary))
                {
                    continue;
                }
                unaryClassification[unary] = RandomClassificationMatrix();
            }
            numUnaryMatrices        = unaryClassification.Count;
            unaryClassificationSize = numClasses * (numHid + 1);
        }
        /*
         * // An example of how you could read in old models with readObject to fix the serialization
         * // You would first read in the old model, then reserialize it
         * private void readObject(ObjectInputStream in)
         * throws IOException, ClassNotFoundException
         * {
         * ObjectInputStream.GetField fields = in.readFields();
         * binaryTransform = ErasureUtils.uncheckedCast(fields.get("binaryTransform", null));
         *
         * // transform binaryTensors
         * binaryTensors = TwoDimensionalMap.treeMap();
         * TwoDimensionalMap<String, String, edu.stanford.nlp.rnn.SimpleTensor> oldTensors = ErasureUtils.uncheckedCast(fields.get("binaryTensors", null));
         * for (String first : oldTensors.firstKeySet()) {
         * for (String second : oldTensors.get(first).keySet()) {
         * binaryTensors.put(first, second, new SimpleTensor(oldTensors.get(first, second).slices));
         * }
         * }
         *
         * binaryClassification = ErasureUtils.uncheckedCast(fields.get("binaryClassification", null));
         * unaryClassification = ErasureUtils.uncheckedCast(fields.get("unaryClassification", null));
         * wordVectors = ErasureUtils.uncheckedCast(fields.get("wordVectors", null));
         *
         * if (fields.defaulted("numClasses")) {
         * throw new RuntimeException();
         * }
         * numClasses = fields.get("numClasses", 0);
         *
         * if (fields.defaulted("numHid")) {
         * throw new RuntimeException();
         * }
         * numHid = fields.get("numHid", 0);
         *
         * if (fields.defaulted("numBinaryMatrices")) {
         * throw new RuntimeException();
         * }
         * numBinaryMatrices = fields.get("numBinaryMatrices", 0);
         *
         * if (fields.defaulted("binaryTransformSize")) {
         * throw new RuntimeException();
         * }
         * binaryTransformSize = fields.get("binaryTransformSize", 0);
         *
         * if (fields.defaulted("binaryTensorSize")) {
         * throw new RuntimeException();
         * }
         * binaryTensorSize = fields.get("binaryTensorSize", 0);
         *
         * if (fields.defaulted("binaryClassificationSize")) {
         * throw new RuntimeException();
         * }
         * binaryClassificationSize = fields.get("binaryClassificationSize", 0);
         *
         * if (fields.defaulted("numUnaryMatrices")) {
         * throw new RuntimeException();
         * }
         * numUnaryMatrices = fields.get("numUnaryMatrices", 0);
         *
         * if (fields.defaulted("unaryClassificationSize")) {
         * throw new RuntimeException();
         * }
         * unaryClassificationSize = fields.get("unaryClassificationSize", 0);
         *
         * rand = ErasureUtils.uncheckedCast(fields.get("rand", null));
         * op = ErasureUtils.uncheckedCast(fields.get("op", null));
         * op.classNames = op.DEFAULT_CLASS_NAMES;
         * op.equivalenceClasses = op.APPROXIMATE_EQUIVALENCE_CLASSES;
         * op.equivalenceClassNames = op.DEFAULT_EQUIVALENCE_CLASS_NAMES;
         * }
         */
        /// <summary>
        /// Given single matrices and sets of options, create the
        /// corresponding SentimentModel.
        /// </summary>
        /// <remarks>
        /// Given single matrices and sets of options, create the
        /// corresponding SentimentModel.  Useful for creating a Java version
        /// of a model trained in some other manner, such as using the
        /// original Matlab code.
        /// </remarks>
        internal static Edu.Stanford.Nlp.Sentiment.SentimentModel ModelFromMatrices(SimpleMatrix W, SimpleMatrix Wcat, SimpleTensor Wt, IDictionary <string, SimpleMatrix> wordVectors, RNNOptions op)
        {
            if (!op.combineClassification || !op.simplifiedModel)
            {
                throw new ArgumentException("Can only create a model using this method if combineClassification and simplifiedModel are turned on");
            }
            TwoDimensionalMap <string, string, SimpleMatrix> binaryTransform = TwoDimensionalMap.TreeMap();

            binaryTransform.Put(string.Empty, string.Empty, W);
            TwoDimensionalMap <string, string, SimpleTensor> binaryTensors = TwoDimensionalMap.TreeMap();

            binaryTensors.Put(string.Empty, string.Empty, Wt);
            TwoDimensionalMap <string, string, SimpleMatrix> binaryClassification = TwoDimensionalMap.TreeMap();
            IDictionary <string, SimpleMatrix> unaryClassification = Generics.NewTreeMap();

            unaryClassification[string.Empty] = Wcat;
            return(new Edu.Stanford.Nlp.Sentiment.SentimentModel(binaryTransform, binaryTensors, binaryClassification, unaryClassification, wordVectors, op));
        }
 public ExternalEvaluate(RNNOptions op, IList <Tree> predictedTrees)
     : base(op)
 {
     this.predicted = predictedTrees;
 }
Exemplo n.º 7
0
        /// <exception cref="System.IO.IOException"/>
        public static void Main(string[] args)
        {
            string basePath         = "/user/socherr/scr/projects/semComp/RNTN/src/params/";
            int    numSlices        = 25;
            bool   useEscapedParens = false;

            for (int argIndex = 0; argIndex < args.Length;)
            {
                if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-slices"))
                {
                    numSlices = System.Convert.ToInt32(args[argIndex + 1]);
                    argIndex += 2;
                }
                else
                {
                    if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-path"))
                    {
                        basePath  = args[argIndex + 1];
                        argIndex += 2;
                    }
                    else
                    {
                        if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-useEscapedParens"))
                        {
                            useEscapedParens = true;
                            argIndex        += 1;
                        }
                        else
                        {
                            log.Info("Unknown argument " + args[argIndex]);
                            System.Environment.Exit(2);
                        }
                    }
                }
            }
            SimpleMatrix[] slices = new SimpleMatrix[numSlices];
            for (int i = 0; i < numSlices; ++i)
            {
                slices[i] = LoadMatrix(basePath + "bin/Wt_" + (i + 1) + ".bin", basePath + "Wt_" + (i + 1) + ".txt");
            }
            SimpleTensor tensor = new SimpleTensor(slices);

            log.Info("W tensor size: " + tensor.NumRows() + "x" + tensor.NumCols() + "x" + tensor.NumSlices());
            SimpleMatrix W = LoadMatrix(basePath + "bin/W.bin", basePath + "W.txt");

            log.Info("W matrix size: " + W.NumRows() + "x" + W.NumCols());
            SimpleMatrix Wcat = LoadMatrix(basePath + "bin/Wcat.bin", basePath + "Wcat.txt");

            log.Info("W cat size: " + Wcat.NumRows() + "x" + Wcat.NumCols());
            SimpleMatrix combinedWV = LoadMatrix(basePath + "bin/Wv.bin", basePath + "Wv.txt");

            log.Info("Word matrix size: " + combinedWV.NumRows() + "x" + combinedWV.NumCols());
            File vocabFile = new File(basePath + "vocab_1.txt");

            if (!vocabFile.Exists())
            {
                vocabFile = new File(basePath + "words.txt");
            }
            IList <string> lines = Generics.NewArrayList();

            foreach (string line in IOUtils.ReadLines(vocabFile))
            {
                lines.Add(line.Trim());
            }
            log.Info("Lines in vocab file: " + lines.Count);
            IDictionary <string, SimpleMatrix> wordVectors = Generics.NewTreeMap();

            for (int i_1 = 0; i_1 < lines.Count && i_1 < combinedWV.NumCols(); ++i_1)
            {
                string[] pieces = lines[i_1].Split(" +");
                if (pieces.Length == 0 || pieces.Length > 1)
                {
                    continue;
                }
                wordVectors[pieces[0]] = combinedWV.ExtractMatrix(0, numSlices, i_1, i_1 + 1);
                if (pieces[0].Equals("UNK"))
                {
                    wordVectors[SentimentModel.UnknownWord] = wordVectors["UNK"];
                }
            }
            // If there is no ",", we first try to look for an HTML escaping,
            // then fall back to "." as better than just a random word vector.
            // Same for "``" and ";"
            CopyWordVector(wordVectors, "&#44", ",");
            CopyWordVector(wordVectors, ".", ",");
            CopyWordVector(wordVectors, "&#59", ";");
            CopyWordVector(wordVectors, ".", ";");
            CopyWordVector(wordVectors, "&#96&#96", "``");
            CopyWordVector(wordVectors, "''", "``");
            if (useEscapedParens)
            {
                ReplaceWordVector(wordVectors, "(", "-LRB-");
                ReplaceWordVector(wordVectors, ")", "-RRB-");
            }
            RNNOptions op = new RNNOptions();

            op.numHid = numSlices;
            op.lowercaseWordVectors = false;
            if (Wcat.NumRows() == 2)
            {
                op.classNames         = new string[] { "Negative", "Positive" };
                op.equivalenceClasses = new int[][] { new int[] { 0 }, new int[] { 1 } };
                // TODO: set to null once old models are updated
                op.numClasses = 2;
            }
            if (!wordVectors.Contains(SentimentModel.UnknownWord))
            {
                wordVectors[SentimentModel.UnknownWord] = SimpleMatrix.Random(numSlices, 1, -0.00001, 0.00001, new Random());
            }
            SentimentModel model = SentimentModel.ModelFromMatrices(W, Wcat, tensor, wordVectors, op);

            model.SaveSerialized("matlab.ser.gz");
        }
        /// <summary>Trains a sentiment model.</summary>
        /// <remarks>
        /// Trains a sentiment model.
        /// The -trainPath argument points to a labeled sentiment treebank.
        /// The trees in this data will be used to train the model parameters (also to seed the model vocabulary).
        /// The -devPath argument points to a second labeled sentiment treebank.
        /// The trees in this data will be used to periodically evaluate the performance of the model.
        /// We won't train on this data; it will only be used to test how well the model generalizes to unseen data.
        /// The -model argument specifies where to save the learned sentiment model.
        /// </remarks>
        /// <param name="args">Command line arguments</param>
        public static void Main(string[] args)
        {
            RNNOptions op               = new RNNOptions();
            string     trainPath        = "sentimentTreesDebug.txt";
            string     devPath          = null;
            bool       runGradientCheck = false;
            bool       runTraining      = false;
            bool       filterUnknown    = false;
            string     modelPath        = null;

            for (int argIndex = 0; argIndex < args.Length;)
            {
                if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-train"))
                {
                    runTraining = true;
                    argIndex++;
                }
                else
                {
                    if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-gradientcheck"))
                    {
                        runGradientCheck = true;
                        argIndex++;
                    }
                    else
                    {
                        if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-trainpath"))
                        {
                            trainPath = args[argIndex + 1];
                            argIndex += 2;
                        }
                        else
                        {
                            if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-devpath"))
                            {
                                devPath   = args[argIndex + 1];
                                argIndex += 2;
                            }
                            else
                            {
                                if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-model"))
                                {
                                    modelPath = args[argIndex + 1];
                                    argIndex += 2;
                                }
                                else
                                {
                                    if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-filterUnknown"))
                                    {
                                        filterUnknown = true;
                                        argIndex++;
                                    }
                                    else
                                    {
                                        int newArgIndex = op.SetOption(args, argIndex);
                                        if (newArgIndex == argIndex)
                                        {
                                            throw new ArgumentException("Unknown argument " + args[argIndex]);
                                        }
                                        argIndex = newArgIndex;
                                    }
                                }
                            }
                        }
                    }
                }
            }
            // read in the trees
            IList <Tree> trainingTrees = SentimentUtils.ReadTreesWithGoldLabels(trainPath);

            log.Info("Read in " + trainingTrees.Count + " training trees");
            if (filterUnknown)
            {
                trainingTrees = SentimentUtils.FilterUnknownRoots(trainingTrees);
                log.Info("Filtered training trees: " + trainingTrees.Count);
            }
            IList <Tree> devTrees = null;

            if (devPath != null)
            {
                devTrees = SentimentUtils.ReadTreesWithGoldLabels(devPath);
                log.Info("Read in " + devTrees.Count + " dev trees");
                if (filterUnknown)
                {
                    devTrees = SentimentUtils.FilterUnknownRoots(devTrees);
                    log.Info("Filtered dev trees: " + devTrees.Count);
                }
            }
            // TODO: binarize the trees, then collapse the unary chains.
            // Collapsed unary chains always have the label of the top node in
            // the chain
            // Note: the sentiment training data already has this done.
            // However, when we handle trees given to us from the Stanford Parser,
            // we will have to perform this step
            // build an uninitialized SentimentModel from the binary productions
            log.Info("Sentiment model options:\n" + op);
            SentimentModel model = new SentimentModel(op, trainingTrees);

            if (op.trainOptions.initialMatrixLogPath != null)
            {
                StringUtils.PrintToFile(new File(op.trainOptions.initialMatrixLogPath), model.ToString(), false, false, "utf-8");
            }
            // TODO: need to handle unk rules somehow... at test time the tree
            // structures might have something that we never saw at training
            // time.  for example, we could put a threshold on all of the
            // rules at training time and anything that doesn't meet that
            // threshold goes into the unk.  perhaps we could also use some
            // component of the accepted training rules to build up the "unk"
            // parameter in case there are no rules that don't meet the
            // threshold
            if (runGradientCheck)
            {
                RunGradientCheck(model, trainingTrees);
            }
            if (runTraining)
            {
                Train(model, modelPath, trainingTrees, devTrees);
                model.SaveSerialized(modelPath);
            }
        }