Exemplo n.º 1
0
        /// <summary>
        /// Called when videoPlayer receives a new frame.
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="image"></param>
        private void videoPlayer_NewFrameReceived(object sender, Accord.Video.NewFrameEventArgs eventArgs)
        {
            // convert image to dlib format
            var img = eventArgs.Frame.ToArray2D <RgbPixel>();

            // detect face every 4 frames
            if (frameIndex % 4 == 0)
            {
                var faces = faceDetector.Detect(img);
                if (faces.Length > 0)
                {
                    currentFace = faces.First();
                }
            }

            // abort if we don't have a face at this point
            if (currentFace == default(DlibDotNet.Rectangle))
            {
                return;
            }

            // detect facial landmarks
            var shape = shapePredictor.Detect(img, currentFace);

            // detect head pose
            if (shape.Parts == 68)
            {
                DetectHeadPose(eventArgs.Frame, shape);
            }

            // update frame counter
            frameIndex++;
        }
        /// <summary>
        /// Called when videoPlayer receives a new frame.
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="image"></param>
        private void videoPlayer_NewFrame(object sender, ref System.Drawing.Bitmap image)
        {
            // conver frame to grayscale
            var grayscale = new GrayscaleBT709();
            var grayImage = grayscale.Apply(image);

            // convert image to dlib format
            var img = grayImage.ToArray2D <RgbPixel>();

            // detect face every 4 frames
            if (frameIndex % 4 == 0)
            {
                var faces = faceDetector.Detect(img);
                if (faces.Length > 0)
                {
                    currentFace = faces.First();
                }
            }

            // abort if we don't have a face at this point
            if (currentFace == default(DlibDotNet.Rectangle))
            {
                return;
            }

            // detect facial landmarks
            var shape = shapePredictor.Detect(img, currentFace);

            // detect eye state
            DetectEyeState(image, shape);

            // update frame counter
            frameIndex++;
        }
Exemplo n.º 3
0
 private void CheckFace(double picth, Mat frame, Rectangle face, double yaw, double pitch)
 {
     if (this.countdown == 0)
     {
         this.picture.Image      = frame.ToBitmap();
         this.SuccessMsg.Visible = true;
         SetStart();
         SetZero();
     }
     else if (this.step == this.checker.Length)
     {
         this.stopwatch.Start();
         CountDown(face);
         if (!IsForntFace(yaw, pitch))
         {
             SetZero();
             this.ErrorMsg.Visible = true;
         }
     }
     else if (this.step == 0 && IsFaceInFrame(face) || Math.Abs(this.checker[this.step] - picth) <= 5)
     {
         checkedListBox.SetItemChecked(this.step, true);
         this.step++;
     }
 }
Exemplo n.º 4
0
        private void CountDown(Rectangle face)
        {
            var time = this.stopwatch.Elapsed.TotalSeconds;

            this.countdown = this.timeset - (int)this.stopwatch.Elapsed.TotalSeconds;
            checkedListBox.Items.RemoveAt(3);
            checkedListBox.Items.Insert(3, $"4. มองตรง ({this.countdown} วินาที)");
            checkedListBox.SetItemChecked(3, true);
        }
Exemplo n.º 5
0
        private static List <(OutputLabels <Matrix <float> >, Rectangle[])> GetData(List <Bitmap> bitmaps, bool isAFace = false)
        {
            var datas = new List <(OutputLabels <Matrix <float> >, Rectangle[])>();

            try
            {
                foreach (var bitmap in bitmaps)
                {
                    var faces = new List <Matrix <RgbPixel> >();
                    var dets  = new Rectangle[0];
                    //在图像中寻找人脸我们需要一个人脸检测器:
                    using (var detector = Dlib.GetFrontalFaceDetector())
                    {
                        using (var img = bitmap.ToMatrix <RgbPixel>())
                        {
                            // 人脸 面积从大到小排序
                            dets = detector.Operator(img).OrderByDescending(x => x.Area).ToArray();
                            // 是否只检测面积最大的人脸
                            if (isAFace)
                            {
                                var shape          = _SP.Detect(img, dets[0]);
                                var faceChipDetail = Dlib.GetFaceChipDetails(shape, 150, 0.25);
                                var faceChip       = Dlib.ExtractImageChip <RgbPixel>(img, faceChipDetail);
                                faces.Add(faceChip);
                            }
                            else
                            {
                                foreach (var face in dets)
                                {
                                    var shape          = _SP.Detect(img, face);
                                    var faceChipDetail = Dlib.GetFaceChipDetails(shape, 150, 0.25);
                                    var faceChip       = Dlib.ExtractImageChip <RgbPixel>(img, faceChipDetail);
                                    faces.Add(faceChip);
                                }
                            }
                            if (!faces.Any())
                            {
                                datas.Add((null, null));
                            }
                            else
                            {
                                //此调用要求DNN将每个人脸图像转换为128D矢量。
                                //在这个128D的矢量空间中,来自同一个人的图像会彼此接近
                                //但是来自不同人的载体将会非常不同。所以我们可以用这些向量
                                //辨别一对图片是来自同一个人还是不同的人。
                                datas.Add((_NET.Operator(faces), dets));
                            }
                        }
                    }
                }
            }
            catch (Exception ex)
            {
                LogHelperNLog.Error(ex);
            }
            return(datas);
        }
Exemplo n.º 6
0
 /// <summary>
 /// Adjust the rectangle to make sure it is inside the range of the image
 /// </summary>
 /// <param name="rect">rectangle to be adjusted</param>
 /// <param name="img">image for reference</param>
 /// <returns></returns>
 public static DlibDotNet.Rectangle RectangleAdjust(DlibDotNet.Rectangle rect, Array2D <RgbPixel> img)
 {
     DlibDotNet.Rectangle fitRect = new DlibDotNet.Rectangle();
     fitRect.Right  = rect.Right < img.Rect.Right ? rect.Right : img.Rect.Right;
     fitRect.Left   = rect.Left > img.Rect.Left ? rect.Left : img.Rect.Left;
     fitRect.Top    = rect.Top > img.Rect.Top ? rect.Top : img.Rect.Top;
     fitRect.Bottom = rect.Bottom < img.Rect.Bottom ? rect.Bottom : img.Rect.Bottom;
     return(fitRect);
 }
Exemplo n.º 7
0
        /// <summary>
        /// 具体计算
        /// </summary>
        /// <param name="bitmap"></param>
        /// <returns></returns>
        public Rectangle[] Face(Bitmap bitmap)
        {
            var dets = new Rectangle[0];

            using (var detector = Dlib.GetFrontalFaceDetector())
                //using (var img = Dlib.LoadImage<RgbPixel>("png.png"))
                using (var img = bitmap.ToArray2D <RgbPixel>())
                {
                    dets = detector.Operator(img);
                }
            return(dets);
        }
Exemplo n.º 8
0
        private DlibDotNet.Rectangle ConvertToDlib(Rect rect)
        {
            DlibDotNet.Rectangle dlibRect = new DlibDotNet.Rectangle()
            {
                Left   = rect.X,
                Top    = rect.Y,
                Right  = rect.X + rect.Width,
                Bottom = rect.Y + rect.Height
            };

            return(dlibRect);
        }
Exemplo n.º 9
0
        private bool IsFaceInFrame(Rectangle face)
        {
            var percent = (double)(face.Area) / (this.size.Width * this.size.Height);

            var isFaceInFrame = this.rect.Left < face.Center.X && face.Center.X < this.rect.Right &&
                                this.rect.Top < face.Center.Y && face.Center.Y < this.rect.Bottom &&
                                -0.5 < percent - 1 && percent - 1 < 1;

            this.ErrorMsg.Visible = !isFaceInFrame;

            return(isFaceInFrame);
        }
Exemplo n.º 10
0
        /// <summary>
        /// 使用路径获取位置数据
        /// </summary>
        /// <param name="url"></param>
        /// <returns></returns>
        public static Rectangle[] GetResult(string url)
        {
            var dets = new Rectangle[0];

            url = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, url);
            using (var detector = Dlib.GetFrontalFaceDetector())
                //using (var img = Dlib.LoadImage<RgbPixel>("png.png"))
                using (var img = Dlib.LoadImage <RgbPixel>(url))
                {
                    dets = detector.Operator(img);
                }
            return(dets);
        }
Exemplo n.º 11
0
        /// <summary>
        /// Called when videoPlayer receives a new frame.
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="image"></param>
        private void videoPlayer_NewFrame(object sender, ref Bitmap image)
        {
            // convert image to dlib format
            var img = image.ToArray2D <RgbPixel>();

            // find the face
            // note that we only detect faces every 4 frames
            if (faceRect == default(DlibDotNet.Rectangle) || frameIndex++ % 4 == 0)
            {
                var faces = faceDetector.Detect(img);
                faceRect = faces.FirstOrDefault();
            }

            // abort if we found no face
            if (faceRect == default(DlibDotNet.Rectangle))
            {
                return;
            }

            // find face landmark points
            var shape          = shapePredictor.Detect(img, faceRect);
            var landmarkPoints = BeardHelper.GetLandmarkPoints(shape);

            // find beard landmark points
            var beardPoints = BeardHelper.GetBeardPoints();

            // calculate Delaunay triangles
            var triangles = Utility.GetDelaunayTriangles(landmarkPoints);

            // get transformations to warp the beard onto the face
            var warps = Utility.GetWarps(beardPoints, landmarkPoints, triangles);

            // split the beard image into an alpha mask and an RGB part
            var beard = BitmapConverter.ToMat(beardImage);

            BeardHelper.SplitChannels(beard, out var beardMask, out var beardRgb);

            // warp the beard RGB image
            var warpedBeard = Utility.ApplyWarps(BitmapConverter.ToBitmap(beardRgb), image.Width, image.Height, warps);

            // warp the beard alpha mask
            var warpedBeardMask = Utility.ApplyWarps(BitmapConverter.ToBitmap(beardMask), image.Width, image.Height, warps);

            // blend the beard onto the camera frame by using the mask
            var frame  = BitmapConverter.ToMat(image);
            var result = BeardHelper.Blend(warpedBeard, warpedBeardMask, frame);

            // return result
            image = BitmapConverter.ToBitmap(result);
        }
Exemplo n.º 12
0
        protected override void Demo(FaceRecognition faceRecognition, string modelFile, string imageFile, Image image, Location location)
        {
            var networkId = SetupNetwork();

            using (var net = LossMulticlassLog.Deserialize(modelFile, networkId))
                using (var bitmap = (Bitmap)System.Drawing.Image.FromFile(imageFile))
                    using (var org = new Bitmap(bitmap.Width, bitmap.Height))
                        using (var g = Graphics.FromImage(org))
                        {
                            g.DrawImage(bitmap, new System.Drawing.Rectangle(0, 0, org.Width, org.Height), new System.Drawing.Rectangle(0, 0, bitmap.Width, bitmap.Height), GraphicsUnit.Pixel);

                            var rect   = new Rectangle(location.Left, location.Top, location.Right, location.Bottom);
                            var dPoint = new[]
                            {
                                new DPoint(rect.Left, rect.Top),
                                new DPoint(rect.Right, rect.Top),
                                new DPoint(rect.Left, rect.Bottom),
                                new DPoint(rect.Right, rect.Bottom),
                            };

                            using (var tmp = Dlib.LoadImageAsMatrix <byte>(imageFile))
                                using (var face = Dlib.ExtractImage4Points(tmp, dPoint, this.Size, this.Size))
                                {
                                    this.SetEvalMode(networkId, net);
                                    var results = net.Probability(face, 1).ToArray();

                                    var labels     = net.GetLabels();
                                    var dictionary = new Dictionary <string, float>();
                                    for (var index = 0; index < labels.Length; index++)
                                    {
                                        dictionary.Add(labels[index], results[0][index]);
                                    }

                                    var maxResult   = dictionary.Aggregate((max, working) => (max.Value > working.Value) ? max : working);
                                    var emotion     = maxResult.Key;
                                    var probability = maxResult.Value;

                                    using (var p = new Pen(Color.Red, bitmap.Width / 200f))
                                        using (var b = new SolidBrush(Color.Blue))
                                            using (var font = new Font("Calibri", 16))
                                            {
                                                g.DrawRectangle(p, rect.Left, rect.Top, rect.Width, rect.Height);

                                                g.DrawString($"{emotion}\n({probability})", font, b, new PointF(rect.Left + 10, rect.Top + 10));
                                            }

                                    org.Save("demo.jpg");
                                }
                        }
        }
Exemplo n.º 13
0
        private static byte[] ExtractFace(Rect face, Bitmap source)
        {
            using (var target = new Bitmap((int)face.Width, (int)face.Height))
            {
                using (Graphics g = Graphics.FromImage(target))
                {
                    g.DrawImage(source, new Rectangle(0, 0, target.Width, target.Height), new Rectangle(face.Left, face.Top, (int)face.Width, (int)face.Height), GraphicsUnit.Pixel);
                }

                using (var memoryStream = new MemoryStream())
                {
                    target.Save(memoryStream, ImageFormat.Png);

                    return(memoryStream.ToArray());
                }
            }
        }
Exemplo n.º 14
0
        private void OnCameraFrame(object sender, EventArgs e)
        {
            img = capture.RetrieveMat();
            Cv2.Flip(img, img, FlipMode.Y);

            var array = new byte[img.Cols * img.Rows * img.ElemSize()];

            Marshal.Copy(img.Data, array, 0, array.Length);
            var image = Dlib.LoadImageData <RgbPixel>(array, (uint)img.Rows, (uint)img.Cols, (uint)(img.Cols * img.ElemSize()));

            faces = detector.Operator(image);

            shapes.Clear();
            foreach (var rect in faces)
            {
                DlibDotNet.Rectangle face = rect;
                shapes.Add(predictor.Detect(image, face));
            }


            Invalidate();
        }
Exemplo n.º 15
0
        /// <summary>
        /// Detect all 68 landmarks on the face on camera
        /// </summary>
        /// <param name="image">The current camera frame to analyze</param>
        /// <param name="frameIndex">The index number of the current camera frame</param>
        /// <returns>A FullObjectDetection object containing all 68 facial landmark points</returns>
        private FullObjectDetection DetectLandmarks(Bitmap image, int frameIndex)
        {
            // convert image to dlib format
            var dlibImage = image.ToArray2D <RgbPixel>();

            // detect faces every 5 frames
            if (frameIndex % 5 == 0)
            {
                var faces = faceDetector.Detect(dlibImage);
                if (faces.Length > 0)
                {
                    // grab the first face
                    currentFace = faces.First();
                }
            }

            // detect all 68 facial landmarks on the face
            if (currentFace != default(DlibDotNet.Rectangle))
            {
                return(shapePredictor.Detect(dlibImage, currentFace));
            }
            return(null);
        }
Exemplo n.º 16
0
        private void Timer1_Tick(object sender, EventArgs e)
        {
            capture.Read(frame);

            this.point = new Point((frame.Width - size.Width) / 2, (frame.Height - size.Height) / 2);
            this.rect  = new Rect(point, size);

            Cv2.Flip(frame, frame, FlipMode.Y);

            if (!frame.Empty() && start)
            {
                var img = ConvertToArray2D(frame);

                var faces = fd.Operator(img);

                if (faces.Any(face => IsFaceInFrame(face)))
                {
                    foreach (var face in faces)
                    {
                        if (IsFaceInFrame(face))
                        {
                            //Dlib.DrawRectangle(img, face, color: new RgbPixel(0, 255, 255), thickness: 4);
                            var shape = sp.Detect(img, face);

                            var landmarks = new MatOfPoint2d(1, 6,
                                                             (from i in new int[] { 30, 8, 36, 45, 48, 54 }
                                                              let pt = shape.GetPart((uint)i)
                                                                       select new OpenCvSharp.Point2d(pt.X, pt.Y)).ToArray());

                            var cameraMatrix = Utility.GetCameraMatrix((int)img.Rect.Width, (int)img.Rect.Height);

                            Mat rotation    = new MatOfDouble();
                            Mat translation = new MatOfDouble();
                            Cv2.SolvePnP(model, landmarks, cameraMatrix, coeffs, rotation, translation);

                            var euler = Utility.GetEulerMatrix(rotation);

                            var yaw   = 180 * euler.At <double>(0, 2) / Math.PI;
                            var pitch = 180 * euler.At <double>(0, 1) / Math.PI;
                            pitch = Math.Sign(pitch) * 180 - pitch;

                            Cv2.ProjectPoints(poseModel, rotation, translation, cameraMatrix, coeffs, poseProjection);

                            //var landmark = landmarks.At<Point2d>(0);
                            //var p = poseProjection.At<Point2d>(0);
                            //Dlib.DrawLine(
                            //    img,
                            //    new DlibDotNet.Point((int)landmark.X, (int)landmark.Y),
                            //    new DlibDotNet.Point((int)p.X, (int)p.Y),
                            //    color: new RgbPixel(0, 255, 255));

                            //foreach (var i in new int[] { 30, 8, 36, 45, 48, 54 })
                            //{
                            //    var point = shape.GetPart((uint)i);
                            //    var rect = new Rectangle(point);
                            //    Dlib.DrawRectangle(img, rect, color: new RgbPixel(255, 255, 0), thickness: 4);
                            //}
                            for (var i = 0; i < shape.Parts; i++)
                            {
                                var point = shape.GetPart((uint)i);
                                var rect  = new Rectangle(point);
                                Dlib.DrawRectangle(img, rect, color: new RgbPixel(0, 255, 255), thickness: 4);
                            }

                            CheckFace(pitch, frame, face, yaw, pitch);
                            frame = img.ToBitmap().ToMat();
                        }
                    }
                }
                else if (this.step > 0)
                {
                    SetZero();
                    this.ErrorMsg.Visible = true;
                }
            }

            Cv2.Rectangle(frame, rect, Scalar.Yellow, thickness: 2);
            camera.Image = frame.ToBitmap();
        }
 private static Location TrimBound(Rectangle location, int width, int height)
 {
     return(new Location(Math.Max(location.Left, 0), Math.Max(location.Top, 0), Math.Min(location.Right, width), Math.Min(location.Bottom, height)));
 }
Exemplo n.º 18
0
        public int Start(string[] args)
        {
            var app = new CommandLineApplication(false);

            app.Name        = this._Name;
            app.Description = this._Description;
            app.HelpOption("-h|--help");

            app.Command("clean", command =>
            {
                var outputOption = command.Option("-o|--output", "The output directory path.", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    if (!outputOption.HasValue() || !Directory.Exists(outputOption.Value()))
                    {
                        Logger.Error($"'{outputOption.Value()} is missing or output option is not specified");
                        return(-1);
                    }

                    Logger.Info($"             Output: {outputOption.Value()}");
                    Logger.Info("");

                    Clean(outputOption.Value());

                    return(0);
                });
            });

            app.Command("train", command =>
            {
                const uint epochDefault             = 300;
                const double learningRateDefault    = 0.001d;
                const double minLearningRateDefault = 0.00001d;
                const uint minBatchSizeDefault      = 256;
                const uint validationDefault        = 30;

                var datasetOption         = command.Option("-d|--dataset", "The directory of dataset", CommandOptionType.SingleValue);
                var epochOption           = command.Option("-e|--epoch", $"The epoch. Default is {epochDefault}", CommandOptionType.SingleValue);
                var learningRateOption    = command.Option("-l|--lr", $"The learning rate. Default is {learningRateDefault}", CommandOptionType.SingleValue);
                var minLearningRateOption = command.Option("-m|--min-lr", $"The minimum learning rate. Default is {minLearningRateDefault}", CommandOptionType.SingleValue);
                var minBatchSizeOption    = command.Option("-b|--min-batchsize", $"The minimum batch size. Default is {minBatchSizeDefault}", CommandOptionType.SingleValue);
                var validationOption      = command.Option("-v|--validation-interval", $"The interval of validation. Default is {validationDefault}", CommandOptionType.SingleValue);
                var useMeanOption         = command.Option("-u|--use-mean", "Use mean image", CommandOptionType.NoValue);
                var outputOption          = command.Option("-o|--output", "The output directory path.", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    var dataset = datasetOption.Value();
                    if (!datasetOption.HasValue() || !Directory.Exists(dataset))
                    {
                        Logger.Error("dataset does not exist");
                        return(-1);
                    }

                    var epoch = epochDefault;
                    if (epochOption.HasValue() && !uint.TryParse(epochOption.Value(), out epoch))
                    {
                        Logger.Error("epoch is invalid value");
                        return(-1);
                    }

                    var learningRate = learningRateDefault;
                    if (learningRateOption.HasValue() && !double.TryParse(learningRateOption.Value(), NumberStyles.Float, Thread.CurrentThread.CurrentCulture.NumberFormat, out learningRate))
                    {
                        Logger.Error("learning rate is invalid value");
                        return(-1);
                    }

                    var minLearningRate = minLearningRateDefault;
                    if (minLearningRateOption.HasValue() && !double.TryParse(minLearningRateOption.Value(), NumberStyles.Float, Thread.CurrentThread.CurrentCulture.NumberFormat, out minLearningRate))
                    {
                        Logger.Error("minimum learning rate is invalid value");
                        return(-1);
                    }

                    var minBatchSize = minBatchSizeDefault;
                    if (minBatchSizeOption.HasValue() && !uint.TryParse(minBatchSizeOption.Value(), out minBatchSize))
                    {
                        Logger.Error("minimum batch size is invalid value");
                        return(-1);
                    }

                    var validation = validationDefault;
                    if (validationOption.HasValue() && !uint.TryParse(validationOption.Value(), out validation) || validation == 0)
                    {
                        Logger.Error("validation interval is invalid value");
                        return(-1);
                    }

                    var output = "result";
                    if (outputOption.HasValue())
                    {
                        output = outputOption.Value();
                    }

                    Directory.CreateDirectory(output);

                    var useMean = useMeanOption.HasValue();

                    Logger.Info($"            Dataset: {dataset}");
                    Logger.Info($"              Epoch: {epoch}");
                    Logger.Info($"      Learning Rate: {learningRate}");
                    Logger.Info($"  Min Learning Rate: {minLearningRate}");
                    Logger.Info($"     Min Batch Size: {minBatchSize}");
                    Logger.Info($"Validation Interval: {validation}");
                    Logger.Info($"           Use Mean: {useMean}");
                    Logger.Info($"             Output: {output}");
                    Logger.Info("");

                    var name      = this.GetBaseName(epoch, learningRate, minLearningRate, minBatchSize);
                    var baseName  = Path.Combine(output, name);
                    var parameter = new Parameter
                    {
                        BaseName        = baseName,
                        Dataset         = dataset,
                        Output          = output,
                        Epoch           = epoch,
                        LearningRate    = learningRate,
                        MinLearningRate = minLearningRate,
                        MiniBatchSize   = minBatchSize,
                        Validation      = validation
                    };

                    Train(parameter);

                    return(0);
                });
            });

            app.Command("test", command =>
            {
                var datasetOption = command.Option("-d|--dataset", "The directory of dataset", CommandOptionType.SingleValue);
                var modelOption   = command.Option("-m|--model", "The model file path", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    var dataset = datasetOption.Value();
                    if (!datasetOption.HasValue() || !Directory.Exists(dataset))
                    {
                        Logger.Error("dataset does not exist");
                        return(-1);
                    }

                    var model = modelOption.Value();
                    if (!modelOption.HasValue() || !File.Exists(model))
                    {
                        Logger.Error("model does not exist");
                        return(-1);
                    }

                    Logger.Info($"Dataset: {dataset}");
                    Logger.Info($"  Model: {model}");
                    Logger.Info("");

                    var parameter = new Parameter
                    {
                        Dataset = dataset,
                        Model   = model
                    };

                    Test(parameter);

                    return(0);
                });
            });

            app.Command("eval", command =>
            {
                var imageOption = command.Option("-i|--image", "The image file.", CommandOptionType.SingleValue);
                var modelOption = command.Option("-m|--model", "The model file path", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    var image = imageOption.Value();
                    if (!imageOption.HasValue() || !File.Exists(image))
                    {
                        Logger.Error("image does not exist");
                        return(-1);
                    }

                    var model = modelOption.Value();
                    if (!modelOption.HasValue() || !File.Exists(model))
                    {
                        Logger.Error("model file does not exist");
                        return(-1);
                    }

                    Logger.Info($"Image File: {image}");
                    Logger.Info($"     Model: {model}");
                    Logger.Info("");

                    var networkId = SetupNetwork();

                    using (var net = LossMulticlassLog.Deserialize(model, networkId))
                        using (var fr = FaceRecognition.Create("Models"))
                            using (var img = FaceRecognition.LoadImageFile(image))
                            {
                                var location = fr.FaceLocations(img).FirstOrDefault();
                                if (location == null)
                                {
                                    Logger.Info("Missing face");
                                    return(-1);
                                }

                                var rect   = new Rectangle(location.Left, location.Top, location.Right, location.Bottom);
                                var dPoint = new[]
                                {
                                    new DPoint(rect.Left, rect.Top),
                                    new DPoint(rect.Right, rect.Top),
                                    new DPoint(rect.Left, rect.Bottom),
                                    new DPoint(rect.Right, rect.Bottom),
                                };
                                using (var tmp = Dlib.LoadImageAsMatrix <byte>(image))
                                {
                                    using (var face = Dlib.ExtractImage4Points(tmp, dPoint, this.Size, this.Size))
                                    {
                                        this.SetEvalMode(networkId, net);
                                        using (var predictedLabels = net.Operator(face))
                                            Logger.Info($"{this.Cast(predictedLabels[0])}");
                                    }
                                }
                            }

                    return(0);
                });
            });

            app.Command("demo", command =>
            {
                command.HelpOption("-?|-h|--help");
                var imageOption     = command.Option("-i|--image", "test image file", CommandOptionType.SingleValue);
                var modelOption     = command.Option("-m|--model", "model file", CommandOptionType.SingleValue);
                var directoryOption = command.Option("-d|--directory", "model files directory path", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    if (!imageOption.HasValue())
                    {
                        Console.WriteLine("image option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!directoryOption.HasValue())
                    {
                        Console.WriteLine("directory option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!modelOption.HasValue())
                    {
                        Console.WriteLine("model option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    var modelFile = modelOption.Value();
                    if (!File.Exists(modelFile))
                    {
                        Console.WriteLine($"'{modelFile}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    var imageFile = imageOption.Value();
                    if (!File.Exists(imageFile))
                    {
                        Console.WriteLine($"'{imageFile}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    var directory = directoryOption.Value();
                    if (!Directory.Exists(directory))
                    {
                        Console.WriteLine($"'{directory}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    using (var fr = FaceRecognition.Create(directory))
                        using (var image = FaceRecognition.LoadImageFile(imageFile))
                        {
                            var loc = fr.FaceLocations(image).FirstOrDefault();
                            if (loc == null)
                            {
                                Console.WriteLine("No face is detected");
                                return(0);
                            }

                            this.Demo(fr, modelFile, imageFile, image, loc);
                        }

                    return(0);
                });
            });

            return(app.Execute(args));
        }
Exemplo n.º 19
0
        private static void Main(string[] args)
        {
            var app = new CommandLineApplication(false);

            app.Name        = nameof(HelenTraining);
            app.Description = "The program for training helen dataset";
            app.HelpOption("-h|--help");

            app.Command("generate", command =>
            {
                command.HelpOption("-?|-h|--help");
                var paddingOption = command.Option("-p|--padding", "padding of detected face", CommandOptionType.SingleValue);
                var modelsOption  = command.Option("-m|--model", "model files directory path", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    if (!modelsOption.HasValue())
                    {
                        Console.WriteLine("model option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!paddingOption.HasValue())
                    {
                        Console.WriteLine("padding option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    var directory = modelsOption.Value();
                    if (!Directory.Exists(directory))
                    {
                        Console.WriteLine($"'{directory}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!int.TryParse(paddingOption.Value(), out var padding))
                    {
                        Console.WriteLine($"padding '{paddingOption.Value()}' is not integer");
                        app.ShowHelp();
                        return(-1);
                    }

                    Console.WriteLine($"Model: {directory}");
                    Console.WriteLine($"Padding: {padding}");

                    _FaceRecognition = FaceRecognition.Create(directory);

                    const string extractPath = "helen";
                    var zips = new[]
                    {
                        new{ Zip = "annotation.zip", IsImage = false, Directory = "annotation" },
                        new{ Zip = "helen_1.zip", IsImage = true, Directory = "helen_1" },
                        new{ Zip = "helen_2.zip", IsImage = true, Directory = "helen_2" },
                        new{ Zip = "helen_3.zip", IsImage = true, Directory = "helen_3" },
                        new{ Zip = "helen_4.zip", IsImage = true, Directory = "helen_4" },
                        new{ Zip = "helen_5.zip", IsImage = true, Directory = "helen_5" }
                    };

                    Directory.CreateDirectory(extractPath);

                    foreach (var zip in zips)
                    {
                        if (!Directory.Exists(Path.Combine(extractPath, zip.Directory)))
                        {
                            ZipFile.ExtractToDirectory(zip.Zip, extractPath);
                        }
                    }

                    var annotation = zips.FirstOrDefault(arg => !arg.IsImage);
                    var imageZips  = zips.Where(arg => arg.IsImage).ToArray();
                    if (annotation == null)
                    {
                        return(-1);
                    }

                    var images = new List <Image>();
                    foreach (var file in Directory.EnumerateFiles(Path.Combine(extractPath, annotation.Directory)))
                    {
                        Console.WriteLine($"Process: '{file}'");

                        var txt      = File.ReadAllLines(file);
                        var filename = txt[0];
                        var jpg      = $"{filename}.jpg";
                        foreach (var imageZip in imageZips)
                        {
                            var found = false;
                            var path  = Path.Combine(Path.Combine(extractPath, imageZip.Directory, jpg));
                            if (File.Exists(path))
                            {
                                found = true;
                                using (var fi = FaceRecognition.LoadImageFile(path))
                                {
                                    var locations = _FaceRecognition.FaceLocations(fi, 1, Model.Hog).ToArray();
                                    if (locations.Length != 1)
                                    {
                                        Console.WriteLine($"\t'{path}' has {locations.Length} faces.");
                                    }
                                    else
                                    {
                                        var location = locations.First();
                                        var parts    = new List <Part>();
                                        for (var i = 1; i < txt.Length; i++)
                                        {
                                            var tmp = txt[i].Split(',').Select(s => s.Trim()).Select(float.Parse).Select(s => (int)s).ToArray();
                                            parts.Add(new Part {
                                                X = tmp[0], Y = tmp[1], Name = $"{i - 1}"
                                            });
                                        }

                                        var image = new Image
                                        {
                                            File = Path.Combine(imageZip.Directory, jpg),
                                            Box  = new Box
                                            {
                                                Left   = location.Left - padding,
                                                Top    = location.Top - padding,
                                                Width  = location.Right - location.Left + 1 + padding * 2,
                                                Height = location.Bottom - location.Top + 1 + padding * 2,
                                                Part   = parts.ToArray()
                                            }
                                        };

                                        using (var bitmap = System.Drawing.Image.FromFile(path))
                                        {
                                            var b = image.Box;
                                            using (var g = Graphics.FromImage(bitmap))
                                            {
                                                using (var p = new Pen(Color.Red, bitmap.Width / 400f))
                                                    g.DrawRectangle(p, b.Left, b.Top, b.Width, b.Height);

                                                foreach (var part in b.Part)
                                                {
                                                    g.FillEllipse(Brushes.GreenYellow, part.X, part.Y, 5, 5);
                                                }
                                            }

                                            var result = Path.Combine(extractPath, "Result");
                                            Directory.CreateDirectory(result);

                                            bitmap.Save(Path.Combine(result, jpg), ImageFormat.Jpeg);
                                        }

                                        images.Add(image);
                                    }
                                }
                            }

                            if (found)
                            {
                                break;
                            }
                        }
                    }

                    var dataset = new Dataset
                    {
                        Name    = "helen dataset",
                        Comment = "Created by Takuya Takeuchi.",
                        Images  = images.ToArray()
                    };

                    var settings = new XmlWriterSettings();
                    using (var sw = new StreamWriter(Path.Combine(extractPath, "helen-dataset.xml"), false, new System.Text.UTF8Encoding(false)))
                        using (var writer = XmlWriter.Create(sw, settings))
                        {
                            writer.WriteProcessingInstruction("xml-stylesheet", @"type=""text/xsl"" href=""image_metadata_stylesheet.xsl""");
                            var serializer = new XmlSerializer(typeof(Dataset));
                            serializer.Serialize(writer, dataset);
                        }

                    return(0);
                });
            });

            app.Command("train", command =>
            {
                command.HelpOption("-?|-h|--help");
                var threadOption = command.Option("-t|--threads", "number of threads", CommandOptionType.SingleValue);
                var xmlOption    = command.Option("-x|--xml", "generated xml file from helen dataset", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    if (!xmlOption.HasValue())
                    {
                        Console.WriteLine("xml option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!threadOption.HasValue())
                    {
                        Console.WriteLine("thread option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    var xmlFile = xmlOption.Value();
                    if (!File.Exists(xmlFile))
                    {
                        Console.WriteLine($"'{xmlFile}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!uint.TryParse(threadOption.Value(), out var thread))
                    {
                        Console.WriteLine($"thread '{threadOption.Value()}' is not integer");
                        app.ShowHelp();
                        return(-1);
                    }

                    Dlib.LoadImageDataset(xmlFile, out Array <Array2D <byte> > imagesTrain, out var facesTrain);

                    using (var trainer = new ShapePredictorTrainer())
                    {
                        trainer.NumThreads = thread;
                        trainer.BeVerbose();

                        Console.WriteLine("Start training");
                        using (var predictor = trainer.Train(imagesTrain, facesTrain))
                        {
                            Console.WriteLine("Finish training");

                            var directory = Path.GetDirectoryName(xmlFile);
                            var output    = Path.Combine(directory, $"{Path.GetFileNameWithoutExtension(xmlFile)}.dat");
                            ShapePredictor.Serialize(predictor, output);
                        }
                    }

                    return(0);
                });
            });

            app.Command("demo", command =>
            {
                command.HelpOption("-?|-h|--help");
                var imageOption     = command.Option("-i|--image", "test image file", CommandOptionType.SingleValue);
                var modelOption     = command.Option("-m|--model", "model file", CommandOptionType.SingleValue);
                var directoryOption = command.Option("-d|--directory", "model files directory path", CommandOptionType.SingleValue);

                command.OnExecute(() =>
                {
                    if (!imageOption.HasValue())
                    {
                        Console.WriteLine("image option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!directoryOption.HasValue())
                    {
                        Console.WriteLine("directory option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    if (!modelOption.HasValue())
                    {
                        Console.WriteLine("model option is missing");
                        app.ShowHelp();
                        return(-1);
                    }

                    var modelFile = modelOption.Value();
                    if (!File.Exists(modelFile))
                    {
                        Console.WriteLine($"'{modelFile}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    var imageFile = imageOption.Value();
                    if (!File.Exists(imageFile))
                    {
                        Console.WriteLine($"'{imageFile}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    var directory = directoryOption.Value();
                    if (!Directory.Exists(directory))
                    {
                        Console.WriteLine($"'{directory}' is not found");
                        app.ShowHelp();
                        return(-1);
                    }

                    _FaceRecognition = FaceRecognition.Create(directory);

                    using (var predictor = ShapePredictor.Deserialize(modelFile))
                        using (var image = FaceRecognition.LoadImageFile(imageFile))
                            using (var mat = Dlib.LoadImageAsMatrix <RgbPixel>(imageFile))
                                using (var bitmap = (Bitmap)System.Drawing.Image.FromFile(imageFile))
                                    using (var white = new Bitmap(bitmap.Width, bitmap.Height))
                                        using (var g = Graphics.FromImage(bitmap))
                                            using (var gw = Graphics.FromImage(white))
                                            {
                                                var loc = _FaceRecognition.FaceLocations(image).FirstOrDefault();
                                                if (loc == null)
                                                {
                                                    Console.WriteLine("No face is detected");
                                                    return(0);
                                                }

                                                var b         = new DlibDotNet.Rectangle(loc.Left, loc.Top, loc.Right, loc.Bottom);
                                                var detection = predictor.Detect(mat, b);

                                                using (var p = new Pen(Color.Red, bitmap.Width / 200f))
                                                {
                                                    g.DrawRectangle(p, loc.Left, b.Top, b.Width, b.Height);
                                                    gw.Clear(Color.White);
                                                    gw.DrawRectangle(p, loc.Left, b.Top, b.Width, b.Height);
                                                }

                                                for (int i = 0, parts = (int)detection.Parts; i < parts; i++)
                                                {
                                                    var part = detection.GetPart((uint)i);
                                                    g.FillEllipse(Brushes.GreenYellow, part.X, part.Y, 15, 15);
                                                    gw.DrawString($"{i}", SystemFonts.DefaultFont, Brushes.Black, part.X, part.Y);
                                                }

                                                bitmap.Save("demo.jpg", ImageFormat.Jpeg);
                                                white.Save("white.jpg", ImageFormat.Jpeg);
                                            }

                    return(0);
                });
            });

            app.Execute(args);
        }
        public static void CreateFeatureVectors()
        {
            int    faceCount = 0;
            float  leftEyebrow, rightEyebrow, leftLip, rightLip, lipHeight, lipWidth;
            string output;

            if (currentDataType == Datatype.Testing)
            {
                output = testingOutput;
            }
            else
            {
                output = trainingOutput;
            }

            string[] dirs = Directory.GetFiles(currentFilePath, "*.*", SearchOption.AllDirectories);

            // Set up Dlib Face Detector
            using (var fd = Dlib.GetFrontalFaceDetector())
                // ... and Dlib Shape Detector
                using (var sp = ShapePredictor.Deserialize("shape_predictor_68_face_landmarks.dat"))
                {
                    string header = "leftEyebrow,rightEyebrow,leftLip,rightLip,lipWidth,lipHeight,label\n";

                    // Create the CSV file and fill in the first line with the header
                    System.IO.File.WriteAllText(output, header);

                    foreach (string dir in dirs)
                    {
                        // call function that sets the label based on what the filename contains
                        string label = DetermineLabel(dir);

                        // load input image
                        if (!(dir.EndsWith("png") || dir.EndsWith("jpg")))
                        {
                            continue;
                        }

                        var img = Dlib.LoadImage <RgbPixel>(dir);

                        // find all faces in the image
                        var faces = fd.Operator(img);

                        // for each face draw over the facial landmarks
                        foreach (var face in faces)
                        {
                            // Write to the console displaying the progress and current emotion
                            Form1.SetProgress(faceCount, dirs.Length - 1);

                            // find the landmark points for this face
                            var shape = sp.Detect(img, face);

                            for (var i = 0; i < shape.Parts; i++)
                            {
                                RgbPixel colour = new RgbPixel(255, 255, 255);
                                var      point  = shape.GetPart((uint)i);
                                var      rect   = new DlibDotNet.Rectangle(point);
                                Dlib.DrawRectangle(img, rect, color: colour, thickness: 2);
                            }

                            SetFormImage(img);

                            leftEyebrow  = CalculateLeftEyebrow(shape);
                            rightEyebrow = CalculateRightEyebrow(shape);
                            leftLip      = CalculateLeftLip(shape);
                            rightLip     = CalculateRightLip(shape);
                            lipWidth     = CalculateLipWidth(shape);
                            lipHeight    = CalculateLipHeight(shape);

                            using (System.IO.StreamWriter file = new System.IO.StreamWriter(output, true))
                            {
                                file.WriteLine(leftEyebrow + "," + rightEyebrow + "," + leftLip + "," + rightLip + "," + lipWidth + "," + lipHeight + "," + label);
                            }

                            // Increment count used for console output
                            faceCount++;
                        }
                    }

                    if (currentDataType == Datatype.Testing)
                    {
                        var testDataView = mlContext.Data.LoadFromTextFile <FeatureInputData>(output, hasHeader: true, separatorChar: ',');
                        GenerateMetrics(testDataView);
                    }

                    Form1.HideImage();
                }
        }