Exemplo n.º 1
0
        public static void testDNN()
        {
            Console.WriteLine("\nBegin Deep Neural Network input-output demo");

            Console.WriteLine("\nCreating a 3-4-5-2 neural network");
            int numInput   = 3;
            int numHiddenA = 4;
            int numHiddenB = 5;
            int numOutput  = 3;

            DnnStaticTwoHl dnn = new DnnStaticTwoHl(numInput, numHiddenA, numHiddenB, numOutput);

            double[] weights = new double[] { 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10,
                                              0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20,
                                              0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30,
                                              0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40,
                                              0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50,
                                              0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59 };

            dnn.SetWeights(weights);

            double[] xValues = new double[] { 1.0, 2.0, 3.0 };

            Console.WriteLine("\nDummy weights and bias values are:");
            ShowVector(weights, 10, 2, true);

            Console.WriteLine("\nDummy inputs are:");
            ShowVector(xValues, 3, 1, true);

            double[] yValues = dnn.ComputeOutputs(xValues);

            Console.WriteLine("\nComputed outputs are:");
            ShowVector(yValues, 3, 4, true);


            Console.WriteLine("\nEnd deep neural network input-output demo\n");
            Console.ReadLine();
        }
Exemplo n.º 2
0
        public static void testDNNTraining()
        {
            int numInput   = 784;
            int numHiddenA = 32;  //5;
            int numHiddenB = 32;  //5;
            int numOutput  = 10;  //3;
            int numRows    = 300; //100;
            int seed       = 1;   // gives nice demo

            Console.WriteLine("\nBegin DNN with back-propagation demo");
            DateTime startTime = DateTime.Now;

            Console.WriteLine("\nGenerating " + numRows +
                              " artificial data items with " + numInput + " features");
            double[][] allData = MakeAllDataFromCSV(numInput, numHiddenA, numHiddenB, numOutput,
                                                    numRows, seed, "train1000.csv");
            Console.WriteLine("Done");

            //ShowMatrix(allData, allData.Length, 2, true);

            Console.WriteLine("\nCreating train (80%) and test (20%) matrices");
            double[][] trainData;
            double[][] testData;
            SplitTrainTest(allData, 0.80, seed, out trainData, out testData);
            Console.WriteLine("Done\n");

            Console.WriteLine("Training data:");
            ShowMatrix(trainData, 4, 2, true);
            Console.WriteLine("Test data:");
            ShowMatrix(testData, 4, 2, true);

            Console.WriteLine("Creating a " + numInput + "-" + numHiddenA + "-" + numHiddenB +
                              "-" + numOutput + " neural network");
            DnnStaticTwoHl nn = new DnnStaticTwoHl(numInput, numHiddenA, numHiddenB, numOutput);

            int    maxEpochs = 1000;
            double learnRate = 0.05;
            double momentum  = 0.01;

            Console.WriteLine("Setting maxEpochs = " + maxEpochs);
            Console.WriteLine("Setting learnRate = " + learnRate.ToString("F2"));
            Console.WriteLine("Setting momentum  = " + momentum.ToString("F2"));

            Console.WriteLine("\nStarting training");
            double[] weights = nn.Train(trainData, maxEpochs, learnRate, momentum);
            Console.WriteLine("Done");
            //Console.WriteLine("\nFinal neural network model weights and biases:\n");
            //ShowVector(weights, 2, 10, true);

            //double[] y = nn.ComputeOutputs(new double[] { 1.0, 2.0, 3.0, 4.0 });
            //ShowVector(y, 3, 3, true);

            double trainAcc = nn.Accuracy(trainData);

            Console.WriteLine("\nFinal accuracy on training data = " +
                              trainAcc.ToString("F4"));

            double testAcc = nn.Accuracy(testData);

            Console.WriteLine("Final accuracy on test data     = " +
                              testAcc.ToString("F4"));

            TimeSpan runTime = DateTime.Now - startTime;

            Console.WriteLine("\nTime elapsed: " + Convert.ToString(runTime.TotalMilliseconds / 1000) + " s");
            Console.WriteLine("\nEnd DNN with back-propagation demo\n");
            Console.ReadLine();
        }
Exemplo n.º 3
0
        }     // MakeAllData

        static double[][] MakeAllDataFromCSV(int numInput, int numFirstHidden, int numSecondHidden,
                                             int numOutput, int numRows, int seed, string file)
        {
            Random rnd        = new Random(seed);
            int    numWeights = (numInput * numFirstHidden) + numFirstHidden + (numFirstHidden * numSecondHidden) +
                                numSecondHidden + (numSecondHidden * numOutput) + numOutput;

            double[] weights = new double[numWeights]; // actually weights & biases
            for (int i = 0; i < numWeights; ++i)
            {
                weights[i] = 20.0 * rnd.NextDouble() - 10.0; // [-10.0 to 10.0]
            }
            Console.WriteLine("Generating weights and biases:");
            ShowVector(weights, 2, 10, true);

            double[][] result = new double[numRows][]; // allocate return-result
            for (int i = 0; i < numRows; ++i)
            {
                result[i] = new double[numInput + numOutput]; // 1-of-N in last column
            }
            DnnStaticTwoHl gnn =
                new DnnStaticTwoHl(numInput, numFirstHidden, numSecondHidden, numOutput); // generating NN

            gnn.SetWeights(weights);

            StreamReader reader = File.OpenText(file);

            reader.ReadLine(); // Ignore first line.
            int r = 0;

            while (!reader.EndOfStream)
            {
                string[] line = reader.ReadLine().Split(',');
                outputsFromLabel = new double[numOutput];
                labels.Add(line[0]);

                //HARDCODED
                if (line[0] == "0")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 1;
                }
                if (line[0] == "1")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 1;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "2")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 1;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "3")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 1;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "4")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 1;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "5")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 1;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "6")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 1;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 1;
                }
                if (line[0] == "7")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 1;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "8")
                {
                    outputsFromLabel[0] = 0;
                    outputsFromLabel[1] = 1;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }
                if (line[0] == "9")
                {
                    outputsFromLabel[0] = 1;
                    outputsFromLabel[1] = 0;
                    outputsFromLabel[2] = 0;
                    outputsFromLabel[3] = 0;
                    outputsFromLabel[4] = 0;
                    outputsFromLabel[5] = 0;
                    outputsFromLabel[6] = 0;
                    outputsFromLabel[7] = 0;
                    outputsFromLabel[8] = 0;
                    outputsFromLabel[9] = 0;
                }

                double[] inputs = new double[numInput];

                for (int i = 0; i < numInput; i++)
                {
                    inputs[i] = double.Parse(line[i]);
                }
                //patterns.Add(inputs);

                // place inputs and 1-of-N output values into curr row
                int c = 0;                         // column into result[][]
                for (int i = 0; i < numInput; ++i) // inputs
                {
                    result[r][c++] = (inputs[i] / 255d);
                }
                for (int i = 0; i < numOutput; ++i) // outputs
                {
                    result[r][c++] = outputsFromLabel[i];
                }

                r++;
            }
            reader.Close();

            return(result);
        } // MakeAllData
Exemplo n.º 4
0
        static double[][] MakeAllData(int numInput, int numFirstHidden, int numSecondHidden,
                                      int numOutput, int numRows, int seed)
        {
            Random rnd        = new Random(seed);
            int    numWeights = (numInput * numFirstHidden) + numFirstHidden + (numFirstHidden * numSecondHidden) +
                                numSecondHidden + (numSecondHidden * numOutput) + numOutput;

            double[] weights = new double[numWeights]; // actually weights & biases
            for (int i = 0; i < numWeights; ++i)
            {
                weights[i] = 20.0 * rnd.NextDouble() - 10.0; // [-10.0 to 10.0]
            }
            Console.WriteLine("Generating weights and biases:");
            ShowVector(weights, 2, 10, true);

            double[][] result = new double[numRows][]; // allocate return-result
            for (int i = 0; i < numRows; ++i)
            {
                result[i] = new double[numInput + numOutput]; // 1-of-N in last column
            }
            DnnStaticTwoHl gnn =
                new DnnStaticTwoHl(numInput, numFirstHidden, numSecondHidden, numOutput); // generating NN

            gnn.SetWeights(weights);

            for (int r = 0; r < numRows; ++r) // for each row
            {
                // generate random inputs
                double[] inputs = new double[numInput];
                for (int i = 0; i < numInput; ++i)
                {
                    inputs[i] = 20.0 * rnd.NextDouble() - 10.0; // [-10.0 to -10.0]
                }
                // compute outputs
                double[] outputs = gnn.ComputeOutputs(inputs);

                // translate outputs to 1-of-N
                double[] oneOfN = new double[numOutput]; // all 0.0

                int    maxIndex = 0;
                double maxValue = outputs[0];
                for (int i = 0; i < numOutput; ++i)
                {
                    if (outputs[i] > maxValue)
                    {
                        maxIndex = i;
                        maxValue = outputs[i];
                    }
                }
                oneOfN[maxIndex] = 1.0;

                // place inputs and 1-of-N output values into curr row
                int c = 0;                         // column into result[][]
                for (int i = 0; i < numInput; ++i) // inputs
                {
                    result[r][c++] = inputs[i];
                }
                for (int i = 0; i < numOutput; ++i) // outputs
                {
                    result[r][c++] = oneOfN[i];
                }
            } // each row
            return(result);
        }     // MakeAllData