getWeight() public method

public getWeight ( AST node ) : int
node AST
return int
Exemplo n.º 1
0
        public static TreeScore NumericHypothesisTest(DAG dag, AST.Range rangeNode, AST.Address functionNode, FunctionOutput <string>[] boots, string initial_output, bool weighted, double significance)
        {
            // this function's input cells
            var input_cells = rangeNode.Addresses();

            var inputs_sz = input_cells.Count();

            // scores
            var input_exclusion_scores = new TreeScore();

            // convert to numeric
            var numeric_boots = ConvertToNumericOutput(boots);

            // sort
            var sorted_num_boots = SortBootstraps(numeric_boots);

            // for each excluded index, test whether the original input
            // falls outside our bootstrap confidence bounds
            for (int i = 0; i < inputs_sz; i++)
            {
                // default weight
                int weight = 1;

                // add weight to score if test fails
                AST.Address xtree = input_cells[i];
                if (weighted)
                {
                    // the weight of the function value of interest
                    weight = dag.getWeight(functionNode);
                }

                double outlieriness = RejectNullHypothesis(sorted_num_boots, initial_output, i, significance);

                if (outlieriness != 0.0)
                {
                    // get the xth indexed input in input_rng i
                    if (input_exclusion_scores.ContainsKey(xtree))
                    {
                        input_exclusion_scores[xtree] += (int)(weight * outlieriness);
                    }
                    else
                    {
                        input_exclusion_scores.Add(xtree, (int)(weight * outlieriness));
                    }
                }
                else
                {
                    // we need to at least add the value to the tree
                    if (!input_exclusion_scores.ContainsKey(xtree))
                    {
                        input_exclusion_scores.Add(xtree, 0);
                    }
                }
            }
            return(input_exclusion_scores);
        }
Exemplo n.º 2
0
        public static TreeScore StringHypothesisTest(DAG dag, AST.Range rangeNode, AST.Address functionNode, FunctionOutput <string>[] boots, string initial_output, bool weighted, double significance)
        {
            // this function's input cells
            var input_cells = rangeNode.Addresses();

            // scores
            var iexc_scores = new TreeScore();

            var inputs_sz = input_cells.Count();

            // exclude each index, in turn
            for (int i = 0; i < inputs_sz; i++)
            {
                // default weight
                int weight = 1;

                // add weight to score if test fails
                AST.Address xtree = input_cells[i];
                if (weighted)
                {
                    // the weight of the function value of interest
                    weight = dag.getWeight(functionNode);
                }

                if (RejectNullHypothesis(boots, initial_output, i, significance))
                {
                    if (iexc_scores.ContainsKey(xtree))
                    {
                        iexc_scores[xtree] += weight;
                    }
                    else
                    {
                        iexc_scores.Add(xtree, weight);
                    }
                }
                else
                {
                    // we need to at least add the value to the tree
                    if (!iexc_scores.ContainsKey(xtree))
                    {
                        iexc_scores.Add(xtree, 0);
                    }
                }
            }

            return(iexc_scores);
        }
Exemplo n.º 3
0
        public static TreeScore StringHypothesisTest(DAG dag, AST.Range rangeNode, AST.Address functionNode, FunctionOutput<string>[] boots, string initial_output, bool weighted, double significance)
        {
            // this function's input cells
            var input_cells = rangeNode.Addresses();

            // scores
            var iexc_scores = new TreeScore();

            var inputs_sz = input_cells.Count();

            // exclude each index, in turn
            for (int i = 0; i < inputs_sz; i++)
            {
                // default weight
                int weight = 1;

                // add weight to score if test fails
                AST.Address xtree = input_cells[i];
                if (weighted)
                {
                    // the weight of the function value of interest
                    weight = dag.getWeight(functionNode);
                }

                if (RejectNullHypothesis(boots, initial_output, i, significance))
                {

                    if (iexc_scores.ContainsKey(xtree))
                    {
                        iexc_scores[xtree] += weight;
                    }
                    else
                    {
                        iexc_scores.Add(xtree, weight);
                    }
                }
                else
                {
                    // we need to at least add the value to the tree
                    if (!iexc_scores.ContainsKey(xtree))
                    {
                        iexc_scores.Add(xtree, 0);
                    }
                }
            }

            return iexc_scores;
        }
Exemplo n.º 4
0
        public static TreeScore NumericHypothesisTest(DAG dag, AST.Range rangeNode, AST.Address functionNode, FunctionOutput<string>[] boots, string initial_output, bool weighted, double significance)
        {
            // this function's input cells
            var input_cells = rangeNode.Addresses();

            var inputs_sz = input_cells.Count();

            // scores
            var input_exclusion_scores = new TreeScore();

            // convert to numeric
            var numeric_boots = ConvertToNumericOutput(boots);

            // sort
            var sorted_num_boots = SortBootstraps(numeric_boots);

            // for each excluded index, test whether the original input
            // falls outside our bootstrap confidence bounds
            for (int i = 0; i < inputs_sz; i++)
            {
                // default weight
                int weight = 1;

                // add weight to score if test fails
                AST.Address xtree = input_cells[i];
                if (weighted)
                {
                    // the weight of the function value of interest
                    weight = dag.getWeight(functionNode);
                }

                double outlieriness = RejectNullHypothesis(sorted_num_boots, initial_output, i, significance);

                if (outlieriness != 0.0)
                {
                    // get the xth indexed input in input_rng i
                    if (input_exclusion_scores.ContainsKey(xtree))
                    {
                        input_exclusion_scores[xtree] += (int)(weight * outlieriness);
                    }
                    else
                    {
                        input_exclusion_scores.Add(xtree, (int)(weight * outlieriness));
                    }
                }
                else
                {
                    // we need to at least add the value to the tree
                    if (!input_exclusion_scores.ContainsKey(xtree))
                    {
                        input_exclusion_scores.Add(xtree, 0);
                    }
                }
            }
            return input_exclusion_scores;
        }